题目内容
若z∈C,且1+z+z2=0,则1+z+z2+…+z100= .
考点:复数代数形式的混合运算
专题:数系的扩充和复数
分析:利用求根公式求出z,再由等比数列的前n项和化简,代入z后利用复数代数形式的乘除运算化简.
解答:
解:由1+z+z2=0,得z=
,∴z3=1,
则1+z+z2+…+z100=
=
=
.
当z=-
+
i 时,z2=(-
+
i)2=
-
i-
=-
-
i,
1+z+z2+…+z100=
=
=
=
+
i;
当z=-
-
i时,z2=(-
-
i)2=-
+
i,
1+z+z2+…+z100=
=
=
=-
-
i.
故答案为:-
±
i.
-1±
| ||
| 2 |
则1+z+z2+…+z100=
| 1-z101 |
| 1-z |
| 1-(z3)33•z2 |
| 1-z |
| 1-z2 |
| 1-z |
当z=-
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 4 |
| ||
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
| ||
| 2 |
1+z+z2+…+z100=
1+
| ||||||
1+
|
3+
| ||
3-
|
(3+
| ||||
(3-
|
| 1 |
| 2 |
| ||
| 2 |
当z=-
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
1+z+z2+…+z100=
1+
| ||||||
1+
|
3-
| ||
3+
|
(3-
| ||||
(3+
|
| 1 |
| 2 |
| ||
| 2 |
故答案为:-
| 1 |
| 2 |
| ||
| 2 |
点评:本题考查了复数代数形式的混合运算,考查了实系数一元二次方程的虚根成对原理,是基础题.
练习册系列答案
相关题目