题目内容

16.设命题p:若实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

分析 分别化简命题p:a<x<3a;命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$,解得2≤x≤3.
(1)若a=1,则p化为:1<x<3,由p∧q为真,可得p与q都为真.
(2)¬p是¬q的充分不必要条件,可得q是p的充分不必要条件,即可得出.

解答 解:命题p:若实数x满足x2-4ax+3a2≤0,其中a>0,可得a<x<3a;命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$,化为$\left\{\begin{array}{l}{(x-3)(x+2)≤0}\\{(x+4)(x-2)≥0}\end{array}\right.$,解得$\left\{\begin{array}{l}{-2≤x≤3}\\{x≥2或x≤-4}\end{array}\right.$,解得2≤x≤3.
(1)若a=1,则p化为:1<x<3,∵p∧q为真,∴$\left\{\begin{array}{l}{1<x<3}\\{2≤x≤3}\end{array}\right.$,解得2≤x≤3.
∴实数x的取值范围为[2,3].
(2)¬p是¬q的充分不必要条件,
∴q是p的充分不必要条件,
∴$\left\{\begin{array}{l}{a≤2}\\{3≤3a}\end{array}\right.$,解得1≤a≤2.
∴实数a的取值范围是[1,2].

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网