题目内容

在平面直角坐标系中,O是坐标原点,若两定点满足|
OA
|=|
OB
|=
OA
OB
=2,
OP
=
OA
+
OB
,则四边形OAPB的面积是
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用|
OA
|=|
OB
|=
OA
OB
=2,可知∠AOB=
π
3
,判断四边形OAPB为平行四边形,面积可求.
OP
=
OA
+
OB
解答: 解:∵|
OA
|=|
OB
|=
OA
OB
=2,
OP
=
OA
+
OB

∴∠AOB=
π
3
,并且四边形OAPB是菱形,
∴其面积为OA×OBsin∠AOB=2×2×
3
2
=2
3

故答案为:2
3
点评:本题考查了平行四边形法则以及向量的数量积的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网