题目内容
某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有多少种?
考点:计数原理的应用
专题:排列组合
分析:两类课程中各至少选一门,包含两种情况:A类选修课选1门,B类选修课选2门;A类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果.
解答:
解:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;
②A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.
∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.
故要求两类课程中各至少选一门,则不同的选法共有30种.
②A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.
∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.
故要求两类课程中各至少选一门,则不同的选法共有30种.
点评:本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.本题也可以从排列的对立面来考虑,写出所有的减去不合题意的,可以这样解:C73-C33-C43=30.
练习册系列答案
相关题目
函数y=2sin(2x+
)的最小正周期是( )
| π |
| 6 |
| A、4π | ||
| B、2π | ||
| C、π | ||
D、
|
若z=
|z|+i2015(i为虚数单位),则复数z对应的点位于( )
| 1 |
| 2 |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |