题目内容
18.已知S,A,B,C是球O表面上的不同点,SA⊥平面ABC,AB⊥BC,AB=1,BC=$\sqrt{2}$,若球O的表面积为4π,则SA=( )| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\frac{3}{2}$ |
分析 由已知中S、A、B、C是球O表面上的点,SA⊥平面ABC,AB⊥BC,易S、A、B、C四点均为长宽高分别SA,AB,BC三边长的长方体的顶点,由长方体外接球的直径等于长方体对角线,利用球的表面积公式即可得到答案.
解答 解:∵SA⊥平面ABC,AB⊥BC,
∴四面体S-ABC的外接球半径等于以长宽高分别SA,AB,BC三边长的长方体的外接球的半径
∵球O的表面积为4π,∴R=1
∵AB=1,BC=$\sqrt{2}$,
∴2R=$\sqrt{1+2+S{A}^{2}}$=2,
∴SA=1
故选B.
点评 本题考查的知识点是球内接多面体,球的表面积公式,其中根据已知条件求出球O的直径(半径),是解答本题的关键.
练习册系列答案
相关题目
8.从正五边形的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
6.
根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.
| 组别 | PM2.5浓度 (微克/立方米) | 频数(天) | 频率 |
| 第一组 | (0,25] | 3 | 0.15 |
| 第二组 | (25,50] | 12 | 0.6 |
| 第三组 | (50,75] | 3 | 0.15 |
| 第四组 | (75,100] | 2 | 0.1 |
①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.
13.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(x,$\frac{1}{2}$),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x为( )
| A. | -$\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{8}$ | D. | -$\frac{3}{8}$ |
10.已知i是虚数单位,复数z=$\frac{1-2i}{i}$,则复数z在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.若A(6,-1,4),B(1,-2,1),C(4,2,3),则△ABC的形状是( )
| A. | 不等边锐角三角形 | B. | 直角三角形 | ||
| C. | 钝角三角形 | D. | 等边三角形 |
14.函数f(x)=1-2sin2x+2cos x的最小值和最大值分别为( )
| A. | -1,1 | B. | -$\frac{3}{2}$,-1 | C. | -$\frac{3}{2}$,3 | D. | -2,$\frac{3}{2}$ |