题目内容
10.已知i是虚数单位,复数z=$\frac{1-2i}{i}$,则复数z在复平面内对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.
解答 解:z=$\frac{1-2i}{i}$=$\frac{-i(1-2i)}{-{i}^{2}}=-2-i$,
则复数z在复平面内对应的点的坐标为:(-2,-1),位于第三象限.
故选:C.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题
练习册系列答案
相关题目
18.已知S,A,B,C是球O表面上的不同点,SA⊥平面ABC,AB⊥BC,AB=1,BC=$\sqrt{2}$,若球O的表面积为4π,则SA=( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\frac{3}{2}$ |
5.为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下2×2列联表:(单位:人).
(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?
(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.
附:参考数据:
(参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$)
| 报考“经济类” | 不报“经济类” | 合计 | |
| 男 | 6 | 24 | 30 |
| 女 | 14 | 6 | 20 |
| 合计 | 20 | 30 | 50 |
(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布及数学期望.
附:参考数据:
| P(X2≥k) | 0.05 | 0.010 |
| k | 3.841 | 6.635 |
15.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为$\sqrt{3}$,则此球的表面积为( )
| A. | 4π | B. | 8π | C. | 16π | D. | 32π |
6.“a>b”是“2a>2b”的_________条件.( )
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |