题目内容

6.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别PM2.5浓度
(微克/立方米)
频数(天)频率
 第一组(0,25]30.15
第二组(25,50]120.6
第三组(50,75]30.15
第四组(75,100]20.1
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.

分析 (1)①a=0.004.②2016年该居民区PM2.5的年平均浓度=12.5×0.15+37.5×0.6+62.5×0.15+87.5×0.1,与35比较即可判断出结论.
(2)由题意可得:PM2.5的24小时平均浓度符合环境空气质量标准的概率为0.9,X的可能取值为0,1,2,3.P(X=k)=${∁}_{3}^{k}(0.1)^{3-k}(0.9)^{k}$.

解答 解:(1)①a=0.004.②2016年该居民区PM2.5的年平均浓度=12.5×0.15+37.5×0.6+62.5×0.15+87.5×0.1=42.5(微克/立方米),∵42.5>35,∴2016年该居民区PM2.5的年平均浓度不符合环境空气质量标准,故该居民取的环境需要改进.
(2)由题意可得:PM2.5的24小时平均浓度符合环境空气质量标准的概率为0.9,X的可能取值为0,1,2,3.P(X=k)=${∁}_{3}^{k}(0.1)^{3-k}(0.9)^{k}$,可得P(X=0)=0.001,P(X=1)=0.027,P(X=2)=0.243,
P(X=3)=0.729.
X的分布列为:

X0123
P0.0010.0270.2430.729
E(X)=0×0.001+1×0.027+2×0.243+3×0.729=2.7,或E(X)=3×0.9=2.7.

点评 本题考查了频率分布直方图的性质及其应用、二项分布列的概率计算公式及其数学期望,考查推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网