题目内容

若sin(-α)=
1
3
,α∈(-
π
2
π
2
),则cos(π+α)=
 
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:由已知等式求出sinα,进而求出cosα的值,原式利用诱导公式化简即可求出值.
解答: 解:∵sin(-α)=-sinα=
1
3
,α∈(-
π
2
π
2
),
∴sinα=-
1
3
,cosα=
1-sin2α
=
2
2
3

则cos(π+α)=-cosα=-
2
2
3

故答案为:-
2
2
3
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网