ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x£¬x£¾0\\{2^x}£¬x¡Ü0\end{array}\right.$£¬Èô$f£¨a£©£¾\frac{1}{2}$£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | $£¨{0£¬\frac{{\sqrt{3}}}{3}}£©$ | B£® | £¨-1£¬0] | C£® | $£¨{-1£¬\frac{{\sqrt{3}}}{3}}£©$ | D£® | $£¨{-1£¬0}£©¡È£¨{0£¬\frac{{\sqrt{3}}}{3}}£©$ |
·ÖÎö ÀûÓ÷ֶκ¯Êý£¬½áºÏÒÑÖªÌõ¼þ£¬Áгö²»µÈʽ×飬ת»¯Çó½â¼´¿É£®
½â´ð ½â£ºÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{log_{\frac{1}{3}}}x£¾\frac{1}{2}\\ x£¾0\end{array}\right.$»ò$\left\{\begin{array}{l}{2^x}£¾\frac{1}{2}\\ x¡Ü0\end{array}\right.$£¬½âµÃ$0£¼a£¼\frac{{\sqrt{3}}}{3}$»ò-1£¼a¡Ü0£¬
¼´ÊµÊýaµÄȡֵ·¶Î§Îª$£¨{-1£¬\frac{{\sqrt{3}}}{3}}£©$£¬
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÓ¦Ó㬲»µÈʽ×éµÄÇó½â£¬¿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}£©$µÄ×îСÕýÖÜÆÚΪ¦Ð£¬f£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»ºó¹ØÓÚÖ±Ïßx=0¶Ô³Æ£¬Ôò$f£¨x+\frac{¦Ð}{12}£©+f£¨x-\frac{¦Ð}{6}£©$µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
| A£® | [k¦Ð-$\frac{11¦Ð}{24}$£¬k¦Ð+$\frac{¦Ð}{24}$]£¨k¡ÊZ£© | B£® | $[k¦Ð+\frac{3¦Ð}{8}£¬k¦Ð+\frac{7¦Ð}{8}]£¨k¡ÊZ£©$ | ||
| C£® | $[2k¦Ð-\frac{¦Ð}{4}£¬2k¦Ð+\frac{3¦Ð}{4}]£¨k¡ÊZ£©$ | D£® | $[2k¦Ð+\frac{3¦Ð}{4}£¬2k¦Ð+\frac{7¦Ð}{4}]£¨k¡ÊZ£©$ |
19£®ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x|x2+x-6£¾0}£¬B={y|y=2x-1£¬x¡Ü2}£¬Ôò£¨∁UA£©¡ÉB=£¨¡¡¡¡£©
| A£® | [-3£¬3] | B£® | [-1£¬2] | C£® | [-3£¬2] | D£® | £¨-1£¬2] |
6£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÒÔÏß¶ÎF1F2Ϊֱ¾¶µÄÔ²ÓëË«ÇúÏßÔÚµÚ¶þÏóÏ޵Ľ»µãΪP£¬ÈôÖ±ÏßPF2ÓëÔ²E£º£¨x-$\frac{c}{2}$£©2+y2=$\frac{{b}^{2}}{16}$ÏàÇУ¬ÔòË«ÇúÏߵĽ¥½üÏß·½³ÌÊÇ£¨¡¡¡¡£©
| A£® | y=¡Àx | B£® | y=¡À2x | C£® | y=¡À$\sqrt{3}$x | D£® | y=¡À$\sqrt{2}$x |
16£®É踴Êý$z=1+\frac{1}{i^3}$£¬ÔòzµÄ¹²éÊýÊÇ£¨¡¡¡¡£©
| A£® | 1 | B£® | 1+i | C£® | -1+i | D£® | 1-i |
20£®ÒÑÖª$f£¨x£©=\left\{\begin{array}{l}£¨3-a£©x-a£¬x£¼1\\{log_a}x£¬x¡Ý1\end{array}\right.$ÊÇ£¨-¡Þ£¬+¡Þ£©ÉϵÄÔöº¯Êý£¬ÄÇôʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨1£¬+¡Þ£© | B£® | £¨1£¬3£© | C£® | £¨0£¬1£©¡È£¨1£¬3£© | D£® | $[\frac{3}{2}£¬3£©$ |