题目内容
已知
=(-4,2),C(2,a),D(b,4)是平面上的两个点,O为坐标原点,若
∥
,且
⊥
,则
=( )
| AB |
| OC |
| AB |
| OD |
| AB |
| CD |
| A、(-1,2) |
| B、(2,-1) |
| C、(2,4) |
| D、(0,5) |
考点:平面向量共线(平行)的坐标表示
专题:平面向量及应用
分析:利用向量共线定理、向量垂直与数量积的关系即可得出.
解答:
解:∵
∥
,且
⊥
,
∴-4a-4=0,-4b+8=0,
解得a=-1,b=2.
∴
=(2,4)-(2,-1)=(0,5).
故选:D.
| OC |
| AB |
| OD |
| AB |
∴-4a-4=0,-4b+8=0,
解得a=-1,b=2.
∴
| CD |
故选:D.
点评:本题考查了向量共线定理、向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关题目
正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD外接球表面积为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
等差数列{an}和{bn},它们的前n项之和分别为Sn和Tn,若
=
,则
的值是( )
| Sn |
| Tn |
| 7n+1 |
| 4n+27 |
| a11 |
| b11 |
A、
| ||
B、
| ||
C、
| ||
D、
|
| A、3.140 |
| B、3.141 |
| C、3.142 |
| D、3.143 |
若A={x|-1≤x<2},B={x∈Z|-1<x<3},则A∩B=( )
| A、{x|-1<x<2} |
| B、{-1,0,1} |
| C、{0,1} |
| D、{0,1,2} |
若函数f(x)对任意x∈R都满足f(2+x)=f(2-x)且f(x)=0有5个实数根,则这5个实根的和为( )
| A、0 | B、5 | C、10 | D、8 |
下列函数中,既是奇函数又是定义域上的增函数的是( )
| A、y=x|x| | ||
B、y=-
| ||
C、y=
| ||
| D、y=x+1 |
已知定义在(0,+∞)上的函数f(x)满足:对任意正实数a,b都有f(ab)=f(a)+f(b)-2,且当x>1时恒有f(x)<2,则下列结论正确的是( )
| A、f(x)在(0,+∞)上是减函数 |
| B、f(x)在(0,+∞)上是增函数 |
| C、f(x)在(0,1)上是减函数,在(1,+∞)上是增函数 |
| D、f(x)在(0,1)上是增函数,在(1,+∞)上是减函数 |