ÌâÄ¿ÄÚÈÝ

5£®Ä³¹¤³§ÐÂÑз¢µÄÒ»ÖÖ²úÆ·µÄ³É±¾¼ÛÊÇ4Ôª/¼þ£¬ÎªÁ˶ԸòúÆ·½øÐкÏÀí¶¨¼Û£¬½«¸Ã²úÆ·°´ÊÂÏÈÄⶨµÄ¼Û¸ñ½øÐÐÊÔÏú£¬µÃµ½ÈçÏÂ6×éÊý¾Ý£º
µ¥¼Ûx£¨Ôª£©88.28.48.68.89
ÏúÁ¿y£¨¼þ£©908483807568
£¨¢ñ£©Èô90¡Üx+y£¼100£¬¾Í˵²úÆ·¡°¶¨¼ÛºÏÀí¡±£¬ÏÖ´ÓÕâ6×éÊý¾ÝÖÐÈÎÒâ³éÈ¡2×éÊý¾Ý£¬2×éÊý¾ÝÖС°¶¨¼ÛºÏÀí¡±µÄ¸öÊý¼ÇΪX£¬ÇóXµÄÊýѧÆÚÍû£»
£¨¢ò£©Çóy¹ØÓÚxµÄÏßÐԻع鷽³Ì£¬²¢Óûع鷽³ÌÔ¤²âÔÚ½ñºóµÄÏúÊÛÖУ¬ÎªÊ¹¹¤³§»ñµÃ×î´óÀûÈ󣬸òúÆ·µÄµ¥¼ÛÓ¦¶¨Îª¶àÉÙÔª£¿£¨ÀûÈóL=ÏúÊÛÊÕÈë-³É±¾£©
¸½£ºÏßÐԻع鷽³Ì$\hat y=\hat bx+\hat a$ÖÐϵÊý¼ÆË㹫ʽ£º$\hat b=\frac{{\sum_{i=1}^n{£¨\;{x_i}-\overline x\;£©£¨\;{y_i}-\overline y\;£©}}}{{\sum_{i=1}^n{{{£¨\;{x_i}-\overline x\;£©}^2}}}}$£¬$\hat a=\overline y-\hat b\;\overline x$£¬ÆäÖÐ$\overline x$¡¢$\overline y$±íʾÑù±¾¾ùÖµ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒ⣬µÃ³öXµÄ¿ÉÄÜȡֵ£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³öXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûEX£»
£¨¢ò£©¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö$\stackrel{¡Ä}{b}$¡¢$\stackrel{¡Ä}{a}$£¬Ð´³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£¬µÃ³öÀûÈóº¯ÊýL£¨x£©µÄ½âÎöʽ£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó³öL£¨x£©µÄ×î´óÖµÓë¶ÔÓ¦xµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£»Âú×ã90¡Üx+y£¼100µÄÓÐ3×飬
ËùÒÔP£¨X=0£©=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{1}{5}$£¬
P£¨X=1£©=$\frac{{C}_{3}^{1}{•C}_{3}^{1}}{{C}_{6}^{2}}$=$\frac{3}{5}$£¬
P£¨X=2£©=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{1}{5}$£»
XµÄ·Ö²¼ÁÐΪ

X012
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
ÊýѧÆÚÍûΪEX=0¡Á$\frac{1}{5}$+1¡Á$\frac{3}{5}$+2¡Á$\frac{1}{5}$=1£»¡­£¨6·Ö£©
£¨¢ò£©ÒòΪ$\overline{x}$=8.5£¬$\overline{y}$=80£¬$\sum_{i=1}^{6}$${{£¨x}_{i}-\overline{x}£©}^{2}$=0.7£¬$\sum_{i=1}^{6}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=-14£»
ËùÒÔ$\stackrel{¡Ä}{b}$=$\frac{-14}{0.7}$=-20£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=250£»
y¹ØÓÚxµÄÏßÐԻع鷽³ÌÊÇ$\stackrel{¡Ä}{y}$=-20x+250£¬
ÀûÈóº¯ÊýL£¨x£©=x£¨-20x+250£©-4£¨-20x+250£©=-20x2+330x-1000£»
µ±x=-$\frac{330}{2¡Á£¨-20£©}$=8.25ʱ£¬L£¨x£©È¡µÃ×î´óÖµ361.25£»
¹Êµ±µ¥¼Û¶¨Îª8.25Ԫʱ£¬¹¤³§¿É»ñµÃ×î´óÀûÈ󣮡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÆÚÍûµÄ¼ÆËãÎÊÌ⣬Ҳ¿¼²éÁËÏßÐԻع鷽³ÌµÄÇó·¨ÒÔ¼°¶þ´Îº¯ÊýµÄ×îÖµÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø