题目内容

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f″(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数f(x)=ax3+bx2+cx+d(a≠0)都关于点(-
b
3a
,f(-
b
3a
))对称:
②存在三次函数f(x)=ax3+bx2+cx+d(a≠0),若f′(x)=0有实数解x0,则点(x0,f(x0))为函数y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=
1
3
x3-
1
2
x2-
5
12
,则:g(
1
2012
)+g(
2
2012
)+g(
3
2012
)+…+g(
2011
2012
)=-1005.5
其中所有正确结论的序号是(  )
A、①②④B、①②③
C、①③④D、②③④
考点:命题的真假判断与应用
专题:函数的性质及应用,简易逻辑
分析:①根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得三次函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心;
②③利用三次函数对称中心的定义和性质进行判断;
④由g(x)=
1
3
x3-
1
2
x2-
5
12
的对称中心是(
1
2
,-
1
2
),得g(x)+(g(1-x)=-1,由此能求出g(
1
2012
)+g(
2
2012
)+g(
3
2012
)+…+g(
2011
2012
)的值.
解答: 解:∵f(x)=ax3+bx2+cx+d(a≠0),
∴f′(x)=3ax2+2bx+c,f''(x)=6ax+2b,
∵f″(x)=6a×(-
b
3a
)+2b=0,
∴任意三次函数都关于点(-
b
3a
,f(-
b
3a
))对称,即①正确;
∵任何三次函数都有对称中心,且“拐点”就是对称中心,
∴存在三次函数f′(x)=0有实数解x0,点(x0,f(x0))为y=f(x)的对称中心,即②正确;
任何三次函数都有且只有一个对称中心,故③不正确;
∵g(x)=
1
3
x3-
1
2
x2-
5
12

∴g′(x)=x2-x,g''(x)=2x-1,
令g''(x)=2x-1=0,得x=
1
2

∵g(
1
2
)=
1
3
×(
1
2
3-
1
2
×(
1
2
2-
5
12
=-
1
2

∴函数g(x)=
1
3
x3-
1
2
x2-
5
12
的对称中心是(
1
2
,-
1
2
),
∴g(x)+g(1-x)=-1,
∴g(
1
2012
)+g(
2
2012
)+g(
3
2012
)+…+g(
2011
2012
)=-1005.5,故④正确.
故正确结论为:①②④.
故选:A
点评:本小题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,求函数的值以及函数的对称性的应用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网