题目内容
在梯形中,,平面平面,四边形是矩形,,点在线段上.
(1)求证:;
(2)求三棱锥的体积.
已知两条平行直线l1:与l2:.
(1)若直线n与l1、l2都垂直,且与坐标轴构成的三角形的面积是,求直线n的方程.
(2)若直线m经过点(,4),且被l1、l2所截得的线段长为2,求直线m的方程;
平行四边形ABCD的一组邻边所在直线的方程分别为x﹣2y﹣1=0与2x+3y﹣9=0,对角线的交点坐标为(2,3).
(1)求已知两直线的交点坐标;
(2)求此平行四边形另两边所在直线的方程.
已知圆截直线所得弦的长度为,则实数的值为( )
A.-2 B.-4 C.-6 D.-8
选修4-5:不等式选讲
已知函数.
(1)当时,求不等式的解集;
(2)若不等式对任意实数恒成立,求的取值范围.
若函数在区间上有且只有一个零点,则实数__________.
已知函数是偶函数,且,则( )
A.-4 B.-2 C.0 D.4
如图,是正方体对角线上一动点,设的长度为,若的面积为 ,则的图象大致是( )
设内角的对边分别为,若,则角的大小为