题目内容

在△ABC中,若b=asinC,c=acosB,则△ABC的形状为(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形
考点:三角形的形状判断
专题:解三角形
分析:由条件利用正弦定理可得 sinA=1,可得A=
π
2
.再由sinC=sinB,利用正弦定理可得c=b,可得△ABC的形状为等腰直角三角形.
解答: 解:在△ABC中,∵b=asinC,c=acosB,
故由正弦定理可得 sinB=sinAsinC,sinC=sinAsinB,
∴sinB=sinAsinAsinB,∴sinA=1,∴A=
π
2

∴sinC=sinAsinB 即 sinC=sinB,
∴由正弦定理可得c=b,故△ABC的形状为等腰直角三角形,
故选:C.
点评:本题主要考查正弦定理的应用,判断三角型的形状,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网