题目内容

20.函数f(x)=$\frac{1}{{{2^x}-1}}$+a关于(0,0)对称.
(1)求a得值;
(2)解不等式f(x)<$\frac{2}{3}$.

分析 (1)根据奇函数的性质即可求出a的值,
(2)根据指数函数,f(x)<$\frac{2}{3}$,化为$\left\{\begin{array}{l}{{2}^{x}-1>0}\\{5-{2}^{x}<0}\end{array}\right.$或$\left\{\begin{array}{l}{{2}^{x}-1<0}\\{5-{2}^{x}>0}\end{array}\right.$,解得即可.

解答 解:(1)函数f(x)=$\frac{1}{{{2^x}-1}}$+a关于(0,0)对称,
∴f(1)=-f(-1),
∴$\frac{1}{2-1}$+a=-$\frac{1}{\frac{1}{2}-1}$-a,
解得a=$\frac{1}{2}$,
(2)由(1)可知,f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$,
∵f(x)<$\frac{2}{3}$,
∴$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$<$\frac{2}{3}$,
∴$\frac{1}{{2}^{x}-1}$<$\frac{1}{6}$,
∴$\frac{5-{2}^{x}}{6({2}^{x}-1)}$<0,
∴$\left\{\begin{array}{l}{{2}^{x}-1>0}\\{5-{2}^{x}<0}\end{array}\right.$或$\left\{\begin{array}{l}{{2}^{x}-1<0}\\{5-{2}^{x}>0}\end{array}\right.$,
解得x>log25,或x<0,
故不等式的解集为(-∞,0)∪(log25,+∞)

点评 本题考查了函数的奇偶性和不等式的解法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网