题目内容

10.将函数$y=2sin(\frac{2}{3}x+\frac{3π}{4})$图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,纵坐标不变,再向右平移$\frac{π}{8}$个单位长度,得到函数y=g(x)的图象,则下列说法正确的是(  )
A.函数g(x)的一条对称轴是$x=\frac{π}{4}$B.函数g(x)的一个对称中心是$(\frac{π}{2},0)$
C.函数g(x)的一条对称轴是$x=\frac{π}{2}$D.函数g(x)的一个对称中心是$(\frac{π}{8},0)$

分析 利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,判断各个选项是否正确,从而得出结论.

解答 解:将函数$y=2sin(\frac{2}{3}x+\frac{3π}{4})$图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,
可得y=2sin(2x+$\frac{3π}{4}$)的图象,
然后纵坐标不变,再向右平移$\frac{π}{8}$个单位长度,
得到函数y=g(x)=2sin(2x-$\frac{π}{4}$+$\frac{3π}{4}$)=2cos2x的图象,
令x=$\frac{π}{4}$,求得g(x)=0,
可得($\frac{π}{4}$,0)是g(x)的一个对称中心,故排除A;
令x=$\frac{π}{2}$,求得g(x)=-1,
可得x=$\frac{π}{2}$是g(x)的图象的一条对称轴,故排除B,故C正确;
令x=$\frac{π}{8}$,求得g(x)=$\sqrt{2}$,可得x=$\frac{π}{8}$不是g(x)的图象的对称中心,故排除D,
故选:C.

点评 本题主要考查诱导公式、函数y=Asin(ωx+φ)的图象变换规律,以及正弦函数、余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网