题目内容

15.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)求T关于x的函数解析式;
(Ⅱ)根据直方图估计利润T不少于100元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量x∈[60,70),则取x=65,且x=65的概率等于需求量落入[60,70)的频率),求T的分布列和数学期望.

分析 (Ⅰ)由题意,当60≤X≤90时,求出利润T,当90<X≤110时,求出利润T,由此能求出T关于x的函数解析式.
(Ⅱ)由题意,设利润T不少于100元为事件A,利润T不少于100元时,即70≤X≤110,由此利用对立事件概率计算公式能求出T的分布列和数学期望.
(III)由题意,利润T的取值可为:80,120,160,180,分别求出相应的概率,由此能求出利润的数学期望E(T).

解答 解:(Ⅰ)由题意,当60≤X≤90时,利润T=5X+1×(90-X)-3×90=4X-180,
当90<X≤110时,利润T=5×90-3×90=180,
即T关于x的函数解析式T=$\left\{\begin{array}{l}{4X-180,(60≤X≤90)}\\{180,(90<X≤110)}\end{array}\right.$.…(4分)
(Ⅱ)由题意,设利润T不少于100元为事件A,
由(Ⅰ)知,利润T不少于100元时,即4X-180≥100,
∴X≥70,即70≤X≤110,
由直方图可知,当70≤X≤110时,
所求概率为:
P(A)=1-P($\overline{A}$)=1-0.025×(70-60)=0.75.…(7分)
( III)由题意,由于4×65-180=80,4×75-180=120,
4×85-180=160,
故利润T的取值可为:80,120,160,180,
且P(T=80)=0.25,P(T=120)=0.15,P(T=160)=0.2,P(T=180)=0.4,…(9分)
故T的分布列为:

T80120160180
P0.250.150.20.4
∴利润的数学期望:
E(T)=80×0.25+120×0.15+160×0.20+180×0.40=142.…(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合思想、转化化归思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网