题目内容

2.如图,在三棱柱ABC-A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=$\sqrt{14}$.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求二面角A-BD-B1的平面角的正弦值.

分析 (1)先证AE⊥平面A1BC,再证A1D∥AE即可‘’
(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.

解答 证明:(Ⅰ)∵在三棱柱ABC-A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,
∴A1D∥AE,AE⊥BC,AE=BE=$\sqrt{2}$,
∵A1A=4,A1E=$\sqrt{14}$.
∴A1E2+AE2=$A{{A}_{1}}^{2}$,∴AE⊥A1E,
∵A1E∩BC=E,∴AE⊥平面A1BC,
∵A1D∥AE,∴A1D⊥平面A1BC.
解:(Ⅱ)如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.
易知A1(0,0,$\sqrt{14}$),B($\sqrt{2}$,0,0),C(-$\sqrt{2}$,0,0),
A(0,$\sqrt{2}$,0),D(0,-$\sqrt{2}$,$\sqrt{14}$),B1($\sqrt{2}$,-$\sqrt{2}$,$\sqrt{14}$),
设平面A1BD的法向量为$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}D}=-\sqrt{2}y=0}\\{\overrightarrow{m}•\overrightarrow{BD}=-\sqrt{2}x-\sqrt{2}y+\sqrt{14}z=0}\end{array}\right.$,可取$\overrightarrow{m}=(\sqrt{7},0,1)$.
设平面B1BD的法向量为$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{B}_{1}D}=-\sqrt{2}x-\sqrt{2}y+\sqrt{14}z=0}\\{\overrightarrow{n}•\overrightarrow{BD}=-\sqrt{2}x=0}\end{array}\right.$,可取$\overrightarrow{n}=(0,\sqrt{7},1)$.
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{1}{2\sqrt{2}×2\sqrt{2}}=\frac{1}{8}$
又∵该二面角为钝角,
∴二面角A1-BD-B1的平面角的余弦值为-$\frac{1}{8}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网