题目内容

11.若a,b在区间$[{0,\sqrt{3}}]$上取值,则函数$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有两个相异极值点的概率是(  )
A.$\frac{1}{4}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

分析 先利用导数求出函数f(x)在R上有两个相异极值点的充要条件,得出关于a,b的约束条件,在a-o-b坐标系中画出可行域,再利用几何概型求出两者的面积比即可.

解答 解:易得f′(x)=ax2+2bx+$\frac{1}{4}$a,
函数f(x)在R上有两个相异极值点的充要条件:
是a≠0且其导函数的判别式大于0,即a≠0且4b2-a2>0,
又a,b在区间[0,$\sqrt{3}$]上取值,则a>0,b>$\frac{1}{2}$a,
点(a,b)满足的区域如图中阴影部分所示,

其中正方形区域的面积为3,
阴影部分的面积为3-$\frac{3}{4}$=$\frac{9}{4}$,
故所求的概率p=$\frac{\frac{9}{4}}{3}$=$\frac{3}{4}$,
故选:C.

点评 本题主要考查了利用导数研究函数的极值、几何概型.简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网