题目内容
3.若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为2.分析 根据函数在x=2处有极小值,得到f′(2)=0,解出关于c的方程,再验证是否为极小值即可.
解答 解:∵函数f(x)=x(x-c)2,
∴f′(x)=3x2-4cx+c2,
又f(x)=x(x-c)2在x=2处有极值,
∴f′(2)=12-8c+c2=0,
解得c=2或6,
又由函数在x=2处有极小值,故c=2,
c=6时,函数f(x)=x(x-c)2在x=2处有极大值,
故答案为:2.
点评 本题考查函数在某一点取得极值的条件,是中档题,本题解题的关键是函数在这一点取得极值,则函数在这一点点导函数等于0,注意这个条件的应用.
练习册系列答案
相关题目
19.已知函数y=Asin(ωx+φ)(A>0,ω>0)的最大值为4,最小值为-4,最小正周期为$\frac{π}{2}$,直线x=$\frac{π}{3}$是其图象的一条对称轴,则符合条件的函数解析式是( )
| A. | y=4sin(4x+$\frac{π}{6}$) | B. | y=4sin(4x+$\frac{π}{3}$) | C. | y=2sin(4x+$\frac{π}{3}$) | D. | y=2sin(4x+$\frac{π}{6}$) |
11.若a,b在区间$[{0,\sqrt{3}}]$上取值,则函数$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有两个相异极值点的概率是( )
| A. | $\frac{1}{4}$ | B. | $1-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |