题目内容

8.已知函数f(x)=ax3+bx2(a≠0),在x=1时取得极值3,求:
(1)f(x)的表达式;
(2)f(x)的单调区间.

分析 (1)求出函数的导数,根据f(x)在x=1时取得极值3,得到关于a,b的不等式组,解出即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.

解答 解:(1)f′(x)=3ax2+2bx,
∵f(x)在x=1时取得极值3,
∴$\left\{\begin{array}{l}{f′(1)=3a+2b=0}\\{f(1)=a+b=3}\end{array}\right.$,
解得:a=-6,b=9,
故f(x)=-6x3+9x2
(2)由(1)得:f′(x)=-18x2+18x=-18x(x-1),
令f′(x)>0,解得:0<x<1,
令f′(x)<0,解得:x>1或x<0,
∴f(x)在(-∞,0),(1,+∞)单调减;[0,1]单调增.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网