ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªº¯Êýf£¨x£©=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-¡+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | f£¨x£©ÔÚ£¨0£¬1£©ÉÏÇ¡ÓÐÒ»¸öÁãµã | B£® | f£¨x£©ÔÚ£¨0£¬1£©ÉÏÇ¡ÓÐÁ½¸öÁãµã | ||
| C£® | f£¨x£©ÔÚ£¨-1£¬0£©ÉÏÇ¡ÓÐÒ»¸öÁãµã | D£® | f£¨x£©ÔÚ£¨-1£¬0£©ÉÏÇ¡ÓÐÁ½¸öÁãµã |
·ÖÎö ÇóµÃf£¨x£©µÄµ¼Êý£¬ÌÖÂÛx£¼1ʱ£¬µ¼ÊýµÄ·ûºÅ£¬Åжϵ¥µ÷ÐÔ£¬¼ÆËãf£¨0£©£¬f£¨1£©ºÍf£¨-1£©£¬¿ÉµÃ·ûºÅ£¬ÓÉÁãµã´æÔÚ¶¨Àí£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£ºº¯Êýf£¨x£©=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-¡+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$£¬
¿ÉµÃf¡ä£¨x£©=1-x+x2-x3+¡+x2012-x2013+x2014
=£¨1-x£©+x2£¨1-x£©+¡+x2012£¨1-x£©+x2014
=£¨1-x£©£¨1+x2+¡+x2012£©+x2014£¬
µ±x£¼1ʱ£¬1-x£¾0£¬f¡ä£¨x£©£¾0£¬
¿ÉµÃf£¨x£©ÔÚ£¨-¡Þ£¬1£©ÉϵÝÔö£¬
ÓÉf£¨0£©=1£¾0£¬¿ÉµÃf£¨1£©£¾0£¬¼´ÓÐf£¨x£©ÔÚ£¨0£¬1£©ÎÞÁãµã£¬ÔòA£¬B¾ù´í£»
ÓÉf£¨-1£©=1-1-$\frac{1}{2}$-$\frac{1}{3}$-¡-$\frac{1}{2015}$£¼0£¬ÓÖf£¨x£©ÔÚ£¨-1£¬0£©µÝÔö£¬
ÓÉÁãµã´æÔÚ¶¨Àí£¬¿ÉµÃf£¨x£©ÔÚ£¨-1£¬0£©ÉÏÇ¡ÓÐÒ»¸öÁãµã£®
ÔòCÕýÈ·£¬D´íÎó£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éº¯ÊýµÄÁãµãÎÊÌâµÄ½â·¨£¬×¢ÒâÔËÓõ¼ÊýÅжϵ¥µ÷ÐÔ£¬ÔËÓú¯ÊýÁãµã´æÔÚ¶¨Àí£¬¿¼²éÍÆÀíÄÜÁ¦ºÍÅжÏÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | a£¾c£¾b | B£® | b£¾a£¾c | C£® | c£¾a£¾b | D£® | a£¾b£¾c |
| A£® | 16¦Ð | B£® | 64¦Ð | C£® | 124¦Ð | D£® | 156¦Ð |
| A£® | $\frac{1}{4}$ | B£® | $1-\frac{{\sqrt{3}}}{2}$ | C£® | $\frac{3}{4}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |