题目内容

14.如图,在四棱锥S-ABCD中,四边形为ABCD矩形,E为SA的中点,SA=SB,AB=2$\sqrt{3}$,BC=3.
(1)证明:SC∥平面BDE;
(2)若BC⊥SB,求三棱锥C-BDE的体积.

分析 (1)连接AC,设AC∩BD=O,由题意可得O为AC的中点,又E为AS的中点,由三角形中位线定理可得SC∥OE,再由线面平行的判定可得SC∥平面BDE;
(2)过E作EH⊥AB,垂足为H,由线面垂直的判定可得BC⊥平面SAB,则EH⊥BC,又EF⊥AB,得到EH⊥平面ABCD,在△SAB中,取AB中点M,连接SM,则SM⊥AB,求得SM=1.进一步可得EH=$\frac{1}{2}SM=\frac{1}{2}$.再求出三角形BCD的面积利用等体积法求得三棱锥C-BDE的体积.

解答 (1)证明:连接AC,设AC∩BD=O,
∵四边形ABCD为矩形,则O为AC的中点,
在△ASC中,E为AS的中点,∴SC∥OE,
又OE?平面BDE,SC?平面BDE,
∴SC∥平面BDE;
(2)解:过E作EH⊥AB,垂足为H,
∵BC⊥AB,且BC⊥SB,AB∩SB=B,
∴BC⊥平面SAB,
∵EH?平面ABS,∴EH⊥BC,又EF⊥AB,AB∩BC=B,
∴EH⊥平面ABCD,
在△SAB中,取AB中点M,连接SM,则SM⊥AB,
∴SM=1.
∵EH∥SM,EH=$\frac{1}{2}SM=\frac{1}{2}$.
∴${S}_{△BCD}=\frac{1}{2}×3×2\sqrt{3}=3\sqrt{3}$.
∴VC-BDE=VE-BCD=$\frac{1}{3}{S}_{△BCD}•EH=\frac{1}{3}×3\sqrt{3}×\frac{1}{2}=\frac{\sqrt{3}}{2}$.
∴三棱锥C-BDE的体积为$\frac{\sqrt{3}}{2}$.

点评 本题主要考查直线与平面的位置关系,空间几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网