题目内容
8.已知几何体的三视图如图所示,则该几何体的表面积是( )| A. | $2π+16+2\sqrt{3}$ | B. | $3π+16+2\sqrt{3}$ | C. | $3π+8+\sqrt{3}$ | D. | $3π+8+2\sqrt{3}$ |
分析 由三视图可知该几何体是一个半圆柱和一个三棱柱的组合体.
解答 解:由三视图可知该几何体是一个半圆柱和一个三棱柱的组合体,
故其表面积为$π×1×2+π+{2^2}×2+2×\frac{1}{2}×2×\sqrt{3}=3π+8+2\sqrt{3}$,
故选:D.
点评 本题考查了圆柱和三棱柱的三视图及其表面积计算公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.
一个四面体的三视图如右图,在三视图中的三个正方形的边长都是$\sqrt{2}$,则该多面体的体积、表面积、外接球面的表面积分别为( )
| A. | 2$\sqrt{2}$,12,4π | B. | $\frac{2\sqrt{2}}{3}$,4$\sqrt{3}$,6π | C. | $\frac{\sqrt{3}}{3}$,6,$\sqrt{6}$π | D. | $\sqrt{2}$,2$\sqrt{3}$,$\frac{2}{3}$π |
20.
如果一个几何体的三视图如图所示,正视图与侧视图是边长为2的正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是( )
| A. | .$2\sqrt{3}$cm | B. | .$4\sqrt{3}$cm2 | C. | 8 cm2 | D. | 12 cm2 |
17.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:
(1)以工作年限为自变量,推销金额为因变量y,作出散点图;
(2)求年推销金额y关于工作年限x的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{5}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 推销员编号 | 1 | 2 | 3 | 4 | 5 |
| 工作年限x/年 | 3 | 5 | 6 | 7 | 9 |
| 推销金额y/万元 | 2 | 3 | 3 | 4 | 5 |
(2)求年推销金额y关于工作年限x的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{5}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.