题目内容
设数列{an}的前n项和为Sn,a1=1,an=
+2(n-1)(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列{
}的前n项和为Tn,证明:
≤Tn<
.
| Sn |
| n |
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列{
| 1 |
| an•an+1 |
| 1 |
| 5 |
| 1 |
| 4 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由an=
+2(n-1),得Sn=nan-2n(n-1)(n∈N*),由此能证明数列{an}为等差数列,并能求出an和Sn关于n的表达式.
(2)由
=(
-
),利用裂项求和法能证明
≤Tn<
.
| Sn |
| n |
(2)由
| 1 |
| (4n-3)(4n+1) |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
| 1 |
| 5 |
| 1 |
| 4 |
解答:
(1)证明:由an=
+2(n-1),得Sn=nan-2n(n-1)(n∈N*).
当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),即an-an-1=4,
∴数列{an}是以a1=1为首项,4为公差的等差数列.
于是,an=4n-3,Sn=
=2n2-n(n∈N*).
(2)证明:Tn=
+
+
+…+
=
+
+
+…+
.
=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)=
<
=
又由题意知Tn单调递增,故Tn≥T1=
,
于是,
≤Tn<
.
| Sn |
| n |
当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),即an-an-1=4,
∴数列{an}是以a1=1为首项,4为公差的等差数列.
于是,an=4n-3,Sn=
| ?a1+an?n |
| 2 |
(2)证明:Tn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a3a4 |
| 1 |
| anan+1 |
=
| 1 |
| 1×5 |
| 1 |
| 5×9 |
| 1 |
| 9×13 |
| 1 |
| (4n-3)(4n+1) |
=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 13 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
=
| 1 |
| 4 |
| 1 |
| 4n+1 |
| n |
| 4n+1 |
| n |
| 4n |
| 1 |
| 4 |
又由题意知Tn单调递增,故Tn≥T1=
| 1 |
| 5 |
于是,
| 1 |
| 5 |
| 1 |
| 4 |
点评:本题考查等差数列的证明,考查数列的通项公式和前n项和的求法,考查不等式的证明,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
下列各选项中,与sin2013°最接近的数是( )
A、-
| ||||
B、
| ||||
C、
| ||||
D、-
|