题目内容

20.已知非直角△ABC中,内角A,B,C的对边分别是a,b,c,其中c=1,又$C=\frac{π}{3}$,若sinC+sin(A-B)=3sin2B,则△ABC的面积为$\frac{{3\sqrt{3}}}{28}$.

分析 利用诱导公式、根据sinC+sin(A-B)=3sin2B求得sinA=3sinB,即a=3b,再利用余弦定理求得b的值,可得a的值,从而求得S△ABC=$\frac{1}{2}$ab•sinC 的值.

解答 解:非直角△ABC中,∵c=1,又$C=\frac{π}{3}$,若sinC+sin(A-B)=3sin2B,
则 sin(B+A)+sin(A-B)=6sinBcosB,
∴2sinAcosB=6sinBcosB,故有sinA=3sinB,a=3b.
由余弦定理知c2=a2+b2-2abcosC,代入3b=a,c=1整理可得b2=$\frac{1}{7}$,b=$\frac{\sqrt{7}}{7}$,a=$\frac{3\sqrt{7}}{7}$
∴S△ABC=$\frac{1}{2}$ab•sinC=$\frac{1}{2}$•$\frac{3\sqrt{7}}{7}$•$\frac{\sqrt{7}}{7}$•$\frac{\sqrt{3}}{2}$=$\frac{{3\sqrt{3}}}{28}$,
故答案为:$\frac{{3\sqrt{3}}}{28}$.

点评 本题主要考察了正弦定理、余弦定理和三角形面积公式、诱导公式的综合应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网