题目内容
16.数列{an}满足:a3=$\frac{1}{5}$,an-an+1=2an•an+1,则数列{an•an+1}前10项的和为$\frac{10}{21}$.分析 把已知数列递推式变形,得到数列{$\frac{1}{{a}_{n}}$}是以2为公差的等差数列,求出等差数列的通项公式,代入an•an+1,然后利用裂项相消法求和.
解答 解:由an-an+1=2an•an+1,得$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}=2$,
即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=2$,
∴数列{$\frac{1}{{a}_{n}}$}是以2为公差的等差数列,
有${a}_{3}=\frac{1}{5}$,∴$\frac{1}{{a}_{3}}=5$,
则$\frac{1}{{a}_{n}}=5+2(n-3)=2n-1$,
∴${a}_{n}=\frac{1}{2n-1}$,
则an•an+1=$\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴数列{an•an+1}前10项的和为$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2×10-1}-\frac{1}{2×10+1})$
=$\frac{1}{2}×(1-\frac{1}{21})=\frac{1}{2}×\frac{20}{21}=\frac{10}{21}$.
故答案为:$\frac{10}{21}$.
点评 本题考查数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目
7.已知i为虚数单位,复数z=a+i(a<0),且|z|=$\sqrt{10}$,则复数z的实部为( )
| A. | 3 | B. | -3 | C. | -1 | D. | i |
4.已知区域D:$\left\{\begin{array}{l}{y≥2}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,则x2+y2的最小值是( )
| A. | 5 | B. | 4 | C. | $\frac{5}{2}$ | D. | 2 |
11.复数$\frac{1}{1+i}$的虚部是( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}i$ | D. | $-\frac{1}{2}i$ |
8.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x)=$\left\{\begin{array}{l}{C,0<x≤A}\\{C+B(x-A),x>A}\end{array}\right.$,已知某家庭今年前三个月的煤气费如表
若四月份该家庭使用了20m3的煤气,则其煤气费为( )
| 月份 | 用气量 | 煤气费 |
| 一月份 | 4m3 | 4元 |
| 二月份 | 25m3 | 14元 |
| 三月份 | 35m3 | 19元 |
| A. | 11.5元 | B. | 11元 | C. | 10.5元 | D. | 10元 |
6.下列命题错误的是( )
| A. | 若p∨q为假命题,则p∧q为假命题 | |
| B. | 若a,b∈[0,1],则不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{π}{16}$ | |
| C. | 命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R,x2+x+1≥0” | |
| D. | 已知函数f(x)可导,则“f′(x0)=0”是“x0是函数f(x)极值点”的充要条件 |