题目内容
椭圆的两个焦点坐标分别为F1(-8,0),F2(8,0),且椭圆上一点到两焦点的距离之和为20,则此椭圆的方程为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意可得:c=8,并且得到椭圆的焦点在x轴上,再根据椭圆的定义得到a=10,进而由a,b,c的关系求出b的值得到椭圆的方程.
解答:
解:∵两个焦点的坐标分别是F1(-8,0),F2(8,0),
∴椭圆的焦点在横轴上,并且c=8,
∴由椭圆的定义可得:2a=20,即a=10,
∴由a,b,c的关系解得b=6,
∴椭圆方程是
+
=1.
故选:C.
∴椭圆的焦点在横轴上,并且c=8,
∴由椭圆的定义可得:2a=20,即a=10,
∴由a,b,c的关系解得b=6,
∴椭圆方程是
| x2 |
| 100 |
| y2 |
| 36 |
故选:C.
点评:本题主要考查椭圆的标准方程与椭圆的定义,以及考查椭圆的简单性质,此题属于基础题.
练习册系列答案
相关题目
函数y=2-x的图象与函数y=|lnx|的图象的两个交点的横坐标分别为a和b,下列结论成立的是( )
| A、0<ab<1 |
| B、ab=1 |
| C、0<ab<e |
| D、ab≥e |
已知数列{an}的通项公式an=3n-16,则数列{an}的前n项和Sn取得最小值时n的值为( )
| A、3 | B、4 | C、5 | D、6 |
已知,
=(x,3),
=(3,1),且
∥
,则x=( )
| a |
| b |
| a |
| b |
| A、9 | B、-9 | C、1 | D、-1 |
曲线y=ex在点A(0,1)处的切线的倾斜角为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
下列命题中,真命题的是( )
A、已知f(x)=sin2x+
| ||||
B、已知数列{an}的通项公式为an=n+
| ||||
| C、已知实数x,y满足x+y=2,则xy的最大值是1 | ||||
| D、已知实数x,y满足xy=1,则x+y的最小值是2 |
若凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)(k≥3且k∈N*)等于( )
A、f(k)+
| ||
| B、f(k)+π | ||
C、f(k)+
| ||
| D、f(k)+2π |