题目内容
若凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)(k≥3且k∈N*)等于( )
A、f(k)+
| ||
| B、f(k)+π | ||
C、f(k)+
| ||
| D、f(k)+2π |
考点:归纳推理
专题:推理和证明
分析:利用凸k+1边形的内角和比凸k边形的内角和多出一个三角形的内角和,即可得到结论.
解答:
解:∵凸k+1边形的内角和比凸k边形的内角和多出一个三角形的内角和,
又三角形的内角和为π,
∴f(k+1)=f(k)+π.
故选:B.
又三角形的内角和为π,
∴f(k+1)=f(k)+π.
故选:B.
点评:本题考查合情推理,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关题目
下列幂函数中,为偶函数的是( )
| A、y=x | ||
| B、y=x2 | ||
| C、y=x3 | ||
D、y=
|
椭圆的两个焦点坐标分别为F1(-8,0),F2(8,0),且椭圆上一点到两焦点的距离之和为20,则此椭圆的方程为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
函数f(x)=
,则“a=
”是“函数f(x)在R上递增”的( )
|
| 1 |
| 2 |
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
定义
=a1a4-a2a3,若函数f(x)=
,则将f(x)的图象向右平移
个单位所得曲线的一条对称轴方程是( )
|
|
| π |
| 3 |
A、x=
| ||
B、x=
| ||
C、x=
| ||
| D、x=π |
函数f(x)=
的单调递减区间是( )
| lnx |
| x |
| A、[e,+∞) |
| B、[1,+∞) |
| C、(0,e] |
| D、(0,1) |
| A、i≤50;p=p+i |
| B、i<50;p=p+i |
| C、i≤50;p=p+1 |
| D、i<50;p=p+1 |