题目内容

10.若等比数列{an}的前n项和为Sn,$\frac{S_8}{S_4}=3则\frac{{{S_{16}}}}{S_4}$=(  )
A.3B.7C.10D.15

分析 根据等比数列的性质可知:可设其中公比为q,根据$\frac{{S}_{8}}{{S}_{4}}$=3求出q4,再代入$\frac{{S}_{16}}{{S}_{4}}$进行求解.

解答 解:∵据$\frac{{S}_{8}}{{S}_{4}}$=3,(q≠1),若q=1可得据$\frac{{S}_{8}}{{S}_{4}}$=2≠3,故q≠1,
∴$\frac{\frac{{a}_{1}(1-{q}^{8})}{1-q}}{\frac{{a}_{1}(1-{q}^{4})}{1-q}}$=$\frac{1-{q}^{8}}{1-{q}^{4}}$=3,化简得1-q8=3(1-q4),可得q8-3q4+2=0,解得q4=1或2,q≠1,解得q4=2,
$\frac{{S}_{16}}{{S}_{4}}$=$\frac{1-{q}^{16}}{1-{q}^{4}}$=$\frac{1-{2}^{4}}{1-2}$=15.
故选:D.

点评 此题主要考查等比数列前n项和,利用等比数列的性质,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网