题目内容

如图1,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1F2,左、右顶点分别为A1,A2,T(1,
3
2
)为椭圆上一点,且TF2垂直于x轴.

(Ⅰ)求椭圆E的方程;
(Ⅱ)给出命题:“已知P是椭圆E上异于A1,A2的一点,直线 A1P,A2P分别交直线l:x=t(t为常数)于不同两点M,N,点Q在直线l上.若直线PQ与椭圆E有且只有一个公共点P,则Q为线段MN的中点”,写出此命题的逆命题,判断你所写出的命题的真假,并加以证明;
(Ⅲ)试研究(Ⅱ)的结论,根据你的研究心得,在图2中作出与该双曲线有且只有一个公共点S的直线m,并写出作图步骤.注意:所作的直线不能与双曲线的渐近线平行.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据T(1,
3
2
)为椭圆上一点,且TF2垂直于x轴,求出c,利用椭圆的定义,求出a,即可求椭圆E的方程;
(Ⅱ)逆命题为真命题.设P(x0,y0)(x0≠±2),求出A1P,A2P的方程,可得M,N的坐标,进而可得Q的坐标,求出PQ的方程,代入椭圆方程,求出△=0,即可得出结论;
(Ⅲ)利用(Ⅱ),可得结论.
解答: 解:(Ⅰ)∵T(1,
3
2
)为椭圆上一点,且TF2垂直于x轴,
∴c=1,
在Rt△TF1F2,|TF2|=
3
2
,|F1F2|=2,∴|TF1|=
5
2

∴2a=|TF1|+|TF2|=4,
∴a=2,
∴b=
a2-c2
=
3

∴椭圆E的方程为
x2
4
+
y2
3
=1

(Ⅱ)逆命题:“已知P是椭圆E上异于A1,A2的一点,直线 A1P,A2P分别交直线l:x=t(t为常数)于不同两点M,N,点Q在直线l上.若Q为线段MN的中点,则直线PQ与椭圆E有且只有一个公共点P”,为真命题.
证明如下:设P(x0,y0)(x0≠±2),则
x02
4
+
y02
3
=1

lA1P:y=
y0
x0+2
(x+2);lA2P:y=
y0
x0-2
(x-2),
∴M(t,
y0(t+2)
x0+2
),N(t,
y0(t-2)
x0-2
),
设MN的中点为Q(x1,y1),则x1=t,y1=
y0(x0t-4)
x02-4

x02-4=
-4y02
3

∴y1=
y0(x0t-4)
x02-4
=
-3(x0t-4)
4y0

∴Q(t,
-3(x0t-4)
4y0
),
∴kPQ=
-3(x0t-4)
4y0
-y0
t-x0
=
-3x0
4y0

∴PQ的方程为y=
-3x0
4y0
(x-x0)+y0,即y=
-3x0
4y0
x+
3
y0

代入椭圆方程,消去y可得
3
4y02
x2-
3x0
2y02
x+
3
y02
-1
=0,
∴△=(
3x0
2y02
)2-4•
3
4y02
•(
3
y02
-1
)=
9x02+12y02-36
4y04
=0,
∴直线PQ与椭圆E有且只有一个公共点P;
(Ⅲ)如图,①任作一条不过点S的直线n垂直于双曲线的实轴;②作直线A1S,A2S分别交直线n于I,J两点;③作线段IJ的中点V,连接SV,则直线SV即为所求的直线m.
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网