ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªµãPÔÚÅ×ÎïÏßx2=yÉÏÔ˶¯£¬¹ýµãP×÷yÖáµÄ´¹Ïß¶ÎPD£¬´¹×ãΪD£®¶¯µãM£¨x£¬y£©Âú×ã$\overrightarrow{DM}=2\overrightarrow{DP}$£¬ÉèµãMµÄ¹ì¼£ÎªÇúÏßC£®£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºy=-1£¬Èô¾¹ýµãF£¨0£¬1£©µÄÖ±ÏßÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬¹ýµãA¡¢B·Ö±ð×÷Ö±ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪA1¡¢B1£¬ÊÔÅжÏÖ±ÏßA1FÓëB1FµÄλÖùØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö £¨¢ñ£©ÉèP£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{DM}=2\overrightarrow{DP}$ÖªµãPΪÏß¶ÎDMµÄÖе㣬$\left\{\begin{array}{l}{x_0}=\frac{1}{2}x\\{y_0}=y\end{array}\right.$£¬ÀûÓõãPÔÚÅ×ÎïÏßx2=yÉÏ£¬È»ºóÇó½âÇúÏßCµÄ·½³Ì£®
£¨¢ò£©ÅжϣºÖ±ÏßA1FÓëB1F´¹Ö±£¬Ö¤Ã÷ÈçÏ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòA1£¨x1£¬-1£©£¬B1£¨x2£¬-1£©£¬ÓÉÒÑÖª£¬Ö±ÏßABµÄбÂÊk´æÔÚ£¬ÉèÆä·½³ÌΪy=kx+1£¬ÁªÁ¢$\left\{\begin{array}{l}y=kx+1\\{x^2}=4y\end{array}\right.$£¬Í¨¹ý¼ÆËã$\overrightarrow{{A}_{1}F}•\overrightarrow{{B}_{1}F}$µÄÊýÁ¿»ý£¬ÍƳö½á¹û£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£¨¢ñ£©ÉèP£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{DM}=2\overrightarrow{DP}$ÖªµãPΪÏß¶ÎDMµÄÖе㣬¹Ê$\left\{\begin{array}{l}{x_0}=\frac{1}{2}x\\{y_0}=y\end{array}\right.$¡£¨2·Ö£©
ÒòΪµãPÔÚÅ×ÎïÏßx2=yÉÏ£¬¹Ê${x_0}^2={y_0}$£¬´Ó¶ø${£¨\frac{1}{2}x£©^2}=y$¡£¨4·Ö£©
¼´ÇúÏßCµÄ·½³ÌΪx2=4y¡£¨5·Ö£©
£¨¢ò£©ÅжϣºÖ±ÏßA1FÓëB1F´¹Ö±£¬¡£¨6·Ö£©
Ö¤Ã÷ÈçÏ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòA1£¨x1£¬-1£©£¬B1£¨x2£¬-1£©£¬ÓÉÒÑÖª£¬Ö±ÏßABµÄбÂÊk´æÔÚ£¬ÉèÆä·½³ÌΪy=kx+1£®¡£¨7·Ö£©
ÓÉ$\left\{\begin{array}{l}y=kx+1\\{x^2}=4y\end{array}\right.$µÃ£ºx2-4kx-4=0¡£¨8·Ö£©
ËùÒÔx1x2=-4£¬¡£¨9·Ö£©
ÒòΪ $\overrightarrow{{A_1}F}=£¨-{x_1}£¬2£©$£¬$\overrightarrow{{B_1}F}=£¨-{x_2}£¬2£©$£¬¡£¨10·Ö£©
¹Ê$\overrightarrow{{A_1}F}•\overrightarrow{{B_1}F}={x_1}{x_2}+4=0⇒\overrightarrow{{A_1}F}¡Í\overrightarrow{{B_1}F}$¡£¨11·Ö£©
ËùÒÔÖ±ÏßA1FÓëB1F´¹Ö±£®¡£¨12·Ö£©
£¨ÆäËü½â·¨²ÎÕÕ¸ø·Ö£©
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌµÄÇ󷨣¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Ð±ÂʵÄÊýÁ¿»ýÓëÖ±ÏߵĴ¹Ö±¹ØÏµ£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| A£® | Ææº¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊÇÔöº¯Êý | B£® | Ææº¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊǼõº¯Êý | ||
| C£® | żº¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊÇÔöº¯Êý | D£® | żº¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊǼõº¯Êý |
| A£® | $\frac{\sqrt{2}}{2}$ | B£® | $\sqrt{2}$ | C£® | 2 | D£® | 2$\sqrt{2}$ |