题目内容
7.若x∈[0,2π],则分别满足下列条件的x的集合为单元素集合的是( )| A. | sinx=0 | B. | cosx=-1 | C. | tanx=-5 | D. | secx=0.5 |
分析 根据三角函数的定义得出x的集合,得出答案.
解答 解:若sinx=0,则x=kπ,k∈Z,∵x∈[0,2π],∴x的集合为{0,π,2π},不符合题意;
若cosx=-1,则x=π+2kπ,∵x∈[0,2π],∴x的集合为{π},符合题意.
故选:B.
点评 本题考查了三角函数的定义,属于基础题.
练习册系列答案
相关题目
17.cos(-2640°)的值为( )
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
12.(2x-$\frac{1}{\sqrt{x}}$)12(x>0)的展开式中,第9项为( )
| A. | C${\;}_{12}^{8}$ | B. | C${\;}_{12}^{8}$24 | C. | -C${\;}_{12}^{9}$ | D. | -C${\;}_{12}^{9}$23 |
17.设函数y=log2$\frac{3}{x-1}$的定义域为集合A,函数y=$\root{3}{x-2}$的定义域为集合B,则A∩B为( )
| A. | {x|x≥2} | B. | {x|x≠1} | C. | {x|x>2} | D. | {x|x>1} |