题目内容
一枚硬币连抛2次,只有一次出现正面的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:古典概型及其概率计算公式
专题:概率与统计
分析:列表得出所有等可能的情况数,找出至少有一次出现正面的情况数,即可求出所求的概率.
解答:
解:列表如下:
所有等可能的情况有4种,其中只有一次出现正面的情况有2种,
则P只有一次出现正面=
=
,
故选:D
| 正 | 反 | |
| 正 | (正,正) | (反,正) |
| 反 | (正,反) | (反,反) |
则P只有一次出现正面=
| 2 |
| 4 |
| 1 |
| 2 |
故选:D
点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
对相关系数r,下列说法正确的是( )
| A、|r|越大,线性相关程度越大 |
| B、|r|越小,线性相关程度越大 |
| C、|r|越大,线性相关程度越小,|r|越接近0,线性相关程度越大 |
| D、|r|≤1且|r|越接近1,线性相关程度越大,|r|越接近0,线性相关程度越小 |
已知cosα=-
,α∈(0,180°),则α的值是( )
| ||
| 2 |
| A、45° | B、125° |
| C、135° | D、145° |
数列{an}满足a1=1且对任意的m,n∈N*都有am+n=am+an+mn,则
+
+
+…+
=( )
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2013 |
A、
| ||
B、
| ||
C、
| ||
D、
|
不等式x2•(x-1)<0的解集是( )
| A、{x|x>1} |
| B、{x|x<1} |
| C、{x|0<x<1} |
| D、{x|x<1,且x≠0} |