ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖª£º¡ÏABCΪֱ½ÇÈý½ÇÐΣ¬¡ÏA=90¡ã£¬¡ÏA¡¢¡ÏB¡¢¡ÏCËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬AD¡ÍBC£¬ÈôÑØAB¼°AC·½ÏòµÄÁ½¸öÁ¦$\overline{AP}$£¬$\overline{AQ}$µÄ´óС·Ö±ðΪ$\frac{1}{c}$£¬$\frac{1}{b}$£®¢ÙÊÔÇó$\overline{AP}$+$\overline{AQ}$µÄ´óС
¢ÚÇóÖ¤£º$\overline{AP}$+$\overline{AQ}$µÄ·½ÏòÓë$\overline{AD}$µÄ·½ÏòÏàͬ£®
·ÖÎö ¢Ù°ÑÏòÁ¿$\overline{AP}$£¬$\overline{AQ}$·Ö±ðÓÃÈý½ÇÐεı߳¤¼°$\overrightarrow{AB}¡¢\overrightarrow{AC}$±íʾ£¬Çó³ö$£¨\overrightarrow{AP}+\overrightarrow{AQ}£©^{2}$£¬Ôò$\overline{AP}$+$\overline{AQ}$µÄ´óС¿ÉÇó£»
¢ÚÓÉÒÑÖª¿ÉµÃ$\overrightarrow{AD}•\overrightarrow{BC}=0$£¬È»ºóÖ¤Ã÷£¨$\overline{AP}$+$\overline{AQ}$£©•$\overrightarrow{BC}$=0µÃ´ð°¸£®
½â´ð
¢Ù½â£ºÓÉÌâÒâ¿ÉµÃ£º$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{{c}^{2}}£¬\overrightarrow{AQ}=\frac{\overrightarrow{AC}}{{b}^{2}}$£¬
¡à$£¨\overrightarrow{AP}+\overrightarrow{AQ}£©^{2}=£¨\frac{\overrightarrow{AB}}{{c}^{2}}+\frac{\overrightarrow{AC}}{{b}^{2}}£©^{2}$=$\frac{|\overrightarrow{AB}{|}^{2}}{{c}^{4}}+2\frac{1}{{c}^{2}{b}^{2}}\overrightarrow{AB}•\overrightarrow{AC}+\frac{|\overrightarrow{AC}{|}^{2}}{{b}^{4}}$
=$\frac{1}{{c}^{2}}+\frac{1}{{b}^{2}}=\frac{{a}^{2}}{{c}^{2}+{b}^{2}}$£®
¡à$|\overrightarrow{AP}+\overrightarrow{AQ}|=\sqrt{\frac{{a}^{2}}{{c}^{2}+{b}^{2}}}=\frac{a}{{c}^{2}+{b}^{2}}\sqrt{{c}^{2}+{b}^{2}}$£»
¢ÚÖ¤Ã÷£º¡ßAD¡ÍBC£¬¡à$\overrightarrow{AD}•\overrightarrow{BC}=0$£®
ÓÖ£¨$\overline{AP}$+$\overline{AQ}$£©•$\overrightarrow{BC}$=£¨$\frac{\overrightarrow{AB}}{{c}^{2}}+\frac{\overrightarrow{AC}}{{b}^{2}}$£©•£¨$\overrightarrow{AC}-\overrightarrow{AB}$£©
=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{{c}^{2}}-\frac{|\overrightarrow{AB}{|}^{2}}{{c}^{2}}+\frac{|\overrightarrow{AC}{|}^{2}}{{b}^{2}}-\frac{\overrightarrow{AC}•\overrightarrow{AB}}{{b}^{2}}$
=$-\frac{{c}^{2}}{{c}^{2}}+\frac{{b}^{2}}{{b}^{2}}=0$£®
¡à$\overline{AP}$+$\overline{AQ}$µÄ·½ÏòÓë$\overline{AD}$µÄ·½ÏòÏàͬ£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿¼¸ºÎºÏÖеÄÓ¦Ó㬿¼²éÁËÏòÁ¿·½ÏòÉϵĵ¥Î»ÏòÁ¿£¬¿¼²éÏòÁ¿¼Ó·¨¡¢¼õ·¨µÄÈý½ÇÐη¨Ôò£¬ÊÇÖеµÌ⣮
| A£® | $¡À\frac{1}{3}$ | B£® | $\frac{1}{3}$ | C£® | -$\frac{1}{3}$ | D£® | ¡À$\frac{\sqrt{2}}{3}$ |