题目内容

10.已知$-\frac{π}{4}$和$\frac{π}{4}$是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的相邻的两个零点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,若sinBsinCcosA=sin2A,求函数f(A)的值域.

分析 (Ⅰ)由题意得函数f(x)的周期,可得ω值,代入点(-$\frac{π}{4}$,0)可得φ值,可得解析式;
(II)由正、余弦定理可得b2+c2=3a2,可得cosA=$\frac{2}{3}$•$\frac{{b}^{2}+{c}^{2}}{2bc}$,由基本不等式可得其范围,由三角函数的值域可得.

解答 解:(Ⅰ)由题意得函数f(x)的周期T=2[$\frac{π}{4}$-(-$\frac{π}{4}$)]=π,
∴ω=$\frac{2π}{π}$=2,∴f(x)=sin(2x+φ),
代入点(-$\frac{π}{4}$,0)可得0=sin(-$\frac{π}{2}$+φ),
∴-$\frac{π}{2}$+φ=kπ,∴φ=kπ+$\frac{π}{2}$,k∈Z
又0<φ<π,∴φ=$\frac{π}{2}$,
∴f(x)=sin(2x+$\frac{π}{2}$)=cos2x;
(II)∵在△ABC中,若sinBsinCcosA=sin2A,
∴由正弦定理可得bccosA=a2
再由余弦定理可得bc•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=a2
整理可得b2+c2=3a2
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+{c}^{2}-\frac{1}{3}({b}^{2}+{c}^{2})}{2bc}$
=$\frac{2}{3}$•$\frac{{b}^{2}+{c}^{2}}{2bc}$≥$\frac{2}{3}$•$\frac{2bc}{2bc}$=$\frac{2}{3}$,∴$\frac{2}{3}$≤cosA<1,
∴f(A)=cos2A=2cos2A-1∈[-$\frac{1}{9}$,1),
故f(A)的值域为∈[-$\frac{1}{9}$,1)

点评 本题考查解三角形,涉及正弦函数的图象性质和正余弦定理以及基本不等式,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网