题目内容

15.在直角坐标系xOy中,已知圆C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),点P在直线l:x+y-4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.
( I)求圆C和直线l的极坐标方程;
( II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR|•|OQ|,求Q点轨迹的极坐标方程.

分析 (Ⅰ)圆C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),可得直角坐标方程:x2+y2=4,利用互化公式可得圆C的极坐标方程.点P在直线l:x+y-4=0上,利用互化公式可得直线l的极坐标方程.
(Ⅱ)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),由${ρ_1}=\frac{4}{sinθ+cosθ},{ρ_2}=2$,又|OP|2=|OR|•|OQ|,即可得出.

解答 解:(Ⅰ)圆C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),可得直角坐标方程:x2+y2=4,∴圆C的极坐标方程ρ=2.
点P在直线l:x+y-4=0上,直线l的极坐标方程ρ=$\frac{4}{sinθ+cosθ}$.
(Ⅱ)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),
因为${ρ_1}=\frac{4}{sinθ+cosθ},{ρ_2}=2$,
又因为|OP|2=|OR|•|OQ|,即${ρ_1}^2=ρ•{ρ_2}$,∴$ρ=\frac{{{ρ_1}^2}}{ρ_2}=\frac{16}{{{{(sinθ+cosθ)}^2}}}×\frac{1}{2}$,
∴ρ=$\frac{8}{1+sin2θ}$.

点评 本题考查了参数方程、极坐标方程化为直角坐标方程及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网