题目内容
已知数列{an}的前n项和是Sn 且Sn=2n2,数列{bn}的前n项和是Tn且Tn+
bn=1.n∈N*
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)记cn=
an•bn,求数列{cn}的前n项和Mn.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)记cn=
| 1 |
| 4 |
考点:数列的求和,等比关系的确定
专题:综合题,等差数列与等比数列
分析:(1)由an=
可求an;
(2)由Tn=1-
bn,①得n≥2时,Tn-1=1-
bn-1②,两式相减可得数列递推式,根据递推式及等比数列的定义可得结论;
(3)易求cn,利用错位相减法可求Mn.
|
(2)由Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
(3)易求cn,利用错位相减法可求Mn.
解答:
解:(1)当n≥2时,an=Sn-Sn-1=4n-2;
又n=1时,a1=S1=2,
∴an=4n-2,n∈N*;
(2)由于Tn=1-
bn,①
令n=1得b1=1-
b1,解得b1=
,当n≥2时,Tn-1=1-
bn-1②,
①-②得bn=
bn-1-
bn,∴bn=
bn-1.
又b1=
≠0,∴
=
,
∴数列{bn}是以
为首项,
为公比的等比数列;
(3)由(2)可得bn=
,
cn=
an•bn=
(4n-2)•
=
,
Mn=
+
+
+…+
①,
Mn=
+
+
+…+
②,
①-②得
Mn=
+
+
+…+
-
=2×
-
-
=
-
,
∴Mn=1-
.
又n=1时,a1=S1=2,
∴an=4n-2,n∈N*;
(2)由于Tn=1-
| 1 |
| 2 |
令n=1得b1=1-
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
①-②得bn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
又b1=
| 2 |
| 3 |
| bn |
| bn-1 |
| 1 |
| 3 |
∴数列{bn}是以
| 2 |
| 3 |
| 1 |
| 3 |
(3)由(2)可得bn=
| 2 |
| 3n |
cn=
| 1 |
| 4 |
| 1 |
| 4 |
| 2 |
| 3n |
| 2n-1 |
| 3n |
Mn=
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 5 |
| 34 |
| 2n-1 |
| 3n+1 |
①-②得
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 32 |
| 2 |
| 33 |
| 2 |
| 3n |
| 2n-1 |
| 3n+1 |
=2×
| ||||
1-
|
| 1 |
| 3 |
| 2n-1 |
| 3n+1 |
| 2 |
| 3 |
| 2n+2 |
| 3n+1 |
∴Mn=1-
| n+1 |
| 3n |
点评:该题考查等差数列、等比数列的通项公式、数列求和,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目