ÌâÄ¿ÄÚÈÝ
8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÖ±ÏßLµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$\frac{¦Ð}{6}$-¦È£©=m£¨mΪ³£Êý£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+2sin¦Á}\\{y=\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¨1£©ÇóÖ±ÏßLµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²CµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÔ²C¹ØÓÚÖ±ÏßL¶Ô³Æ£¬ÇóʵÊýmµÄÖµ£®
·ÖÎö £¨1£©Ö±ÏßLµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$\frac{¦Ð}{6}$-¦È£©=m£¨mΪ³£Êý£©£¬Õ¹¿ª¿ÉµÃ£º¦Ñ£¨$\frac{1}{2}$cos¦È-$\frac{\sqrt{3}}{2}$sin¦È£©=m£¬ÀûÓû¥»¯¹«Ê½´úÈë¿ÉµÃÆÕͨ·½³Ì£®Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+2sin¦Á}\\{y=\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£®
£¨2£©ÓÉÔ²C¹ØÓÚÖ±ÏßL¶Ô³Æ£¬¿ÉµÃÔ²ÐÄ£¨-1£¬$\sqrt{3}$£©ÔÚÖ±ÏßLÉÏ£¬´úÈë¼´¿ÉµÃ³öm£®
½â´ð ½â£º£¨1£©Ö±ÏßLµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$\frac{¦Ð}{6}$-¦È£©=m£¨mΪ³£Êý£©£¬Õ¹¿ª¿ÉµÃ£º¦Ñ£¨$\frac{1}{2}$cos¦È-$\frac{\sqrt{3}}{2}$sin¦È£©=m£¬¿ÉµÃÆÕͨ·½³Ì£ºx-$\sqrt{3}$y-2m=0£®
Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+2sin¦Á}\\{y=\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£º£¨x+1£©2+$£¨y-\sqrt{3}£©^{2}$=4£®
£¨2£©¡ßÔ²C¹ØÓÚÖ±ÏßL¶Ô³Æ£¬¡àÔ²ÐÄ£¨-1£¬$\sqrt{3}$£©ÔÚÖ±ÏßLÉÏ£¬
¡à-1-$\sqrt{3}$¡Á$\sqrt{3}$-2m=0£¬½âµÃm=-2£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ô²µÄ¶Ô³ÆÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.£¨tΪ²ÎÊý£©$ | B£® | $\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.£¨tΪ²ÎÊý£©$ | ||
| C£® | $\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.£¨tΪ²ÎÊý£©$ | D£® | $\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.£¨tΪ²ÎÊý£©$ |
| A£® | ²»Æ½ÐеÄÁ½ÌõÀâËùÔÚÖ±ÏßËù³ÉµÄ½ÇΪ60¡ã»ò90¡ã | |
| B£® | ËıßÐÎAECFΪÕý·½ÐÎ | |
| C£® | µãAµ½Æ½ÃæBCEµÄ¾àÀëΪ$\frac{{\sqrt{6}}}{4}$ | |
| D£® | ¸Ã°ËÃæÌåµÄ¶¥µãÔÚͬһ¸öÇòÃæÉÏ |
| A£® | [2£¬18£© | B£® | £¨$\frac{3£¨\sqrt{5}-1£©}{2}$£¬2] | C£® | [2£¬$\frac{27-9\sqrt{5}}{2}$£© | D£® | £¨2£¬9-3$\sqrt{5}$£© |
| A£® | 0 | B£® | 1 | C£® | $\sqrt{2}$ | D£® | 3 |
| A£® | $\sqrt{5}$ | B£® | 5 | C£® | $\frac{\sqrt{5}}{5}$ | D£® | $\frac{1}{5}$ |