题目内容
1.函数f(x)=ln(x2-1)的定义域为( )| A. | (-∞,-1)∪(1,+∞) | B. | (-∞,1)∪(1,+∞) | C. | (1,+∞) | D. | (0,1) |
分析 由对数的真数大于零列出不等式,由一元二次不等式的解法求出函数f(x)的定义域.
解答 解:若函数f(x)=ln(x2-1)有意义,
则x2-1>0,解得x<-1或x>1,
∴f(x)的定义域是(-∞,-1)∪(1,+∞),
故选:A.
点评 本题考查函数的定义域及其求法,以及一元二次不等式的解法,属于基础题.
练习册系列答案
相关题目
9.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为( )
| A. | (1,+∞) | B. | [1,+∞) | C. | (1,5)∪(5,+∞) | D. | [1,5)∪(5,+∞) |
16.设向量$\overrightarrow{OA}=\overrightarrow{e_1},\overrightarrow{OB}=\overrightarrow{e_2}$,若$\overrightarrow{e_1}$与$\overrightarrow{e_2}$不共线,且$\overrightarrow{AP}=6\overrightarrow{PB}$,则$\overrightarrow{OP}$=( )
| A. | $\frac{1}{7}\overrightarrow{e_1}-\frac{6}{7}\overrightarrow{e_2}$ | B. | $\frac{6}{7}\overrightarrow{e_1}-\frac{1}{7}\overrightarrow{e_2}$ | C. | $\frac{1}{7}\overrightarrow{e_1}+\frac{6}{7}\overrightarrow{e_2}$ | D. | $\frac{6}{7}\overrightarrow{e_1}+\frac{1}{7}\overrightarrow{e_2}$ |
6.若抛物线y2=2x上的一点到其准线的距离为2,则该点的坐标可以是( )
| A. | $({\frac{1}{2}\;\;,\;\;1})$ | B. | $({1\;\;,\;\;\sqrt{2}})$ | C. | $({\frac{3}{2}\;\;,\;\;\sqrt{3}})$ | D. | (2,2) |
4.已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A,B重合的动点.MN是圆O的一条直径,则$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范围是( )
| A. | [-$\frac{3}{4}$,0) | B. | [-$\frac{3}{4}$,0] | C. | [-$\frac{1}{2}$,1) | D. | [-$\frac{1}{2}$,1] |