题目内容
16.设向量$\overrightarrow{OA}=\overrightarrow{e_1},\overrightarrow{OB}=\overrightarrow{e_2}$,若$\overrightarrow{e_1}$与$\overrightarrow{e_2}$不共线,且$\overrightarrow{AP}=6\overrightarrow{PB}$,则$\overrightarrow{OP}$=( )| A. | $\frac{1}{7}\overrightarrow{e_1}-\frac{6}{7}\overrightarrow{e_2}$ | B. | $\frac{6}{7}\overrightarrow{e_1}-\frac{1}{7}\overrightarrow{e_2}$ | C. | $\frac{1}{7}\overrightarrow{e_1}+\frac{6}{7}\overrightarrow{e_2}$ | D. | $\frac{6}{7}\overrightarrow{e_1}+\frac{1}{7}\overrightarrow{e_2}$ |
分析 利用两个向量的加减法的法则,以及其几何意义,得出结论.
解答 解:向量$\overrightarrow{OA}=\overrightarrow{e_1},\overrightarrow{OB}=\overrightarrow{e_2}$,若$\overrightarrow{e_1}$与$\overrightarrow{e_2}$不共线,且$\overrightarrow{AP}=6\overrightarrow{PB}$,
则$\overrightarrow{OP}$=$\overrightarrow{AP}$-$\overrightarrow{AO}$=$\frac{6}{7}$$\overrightarrow{AB}$+$\overrightarrow{OA}$=$\frac{6}{7}$•($\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$)+$\overrightarrow{{e}_{1}}$=$\frac{1}{7}$$\overrightarrow{{e}_{1}}$+$\frac{6}{7}$$\overrightarrow{{e}_{2}}$,
故选:C.
点评 本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.
练习册系列答案
相关题目
1.函数f(x)=ln(x2-1)的定义域为( )
| A. | (-∞,-1)∪(1,+∞) | B. | (-∞,1)∪(1,+∞) | C. | (1,+∞) | D. | (0,1) |
8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;\;,\;\;b>0})$的一个焦点为(5,0),渐近线方程为$y=±\frac{3}{4}x$,则该双曲线的方程为( )
| A. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ | D. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ |
19.在△ABC中,角A、B、C所对的边长分别为a,b,c,如果sin2B=sinAsinC,且c=2a则cosB的值等于( )
| A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |