题目内容
4.已知数列{an}的前n项和Sn满足${S_n}={n^2}({n∈{N^*}})$,记数列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n项和为Tn,则T2017=( )| A. | $\frac{4034}{4035}$ | B. | $\frac{2017}{4035}$ | C. | $\frac{2016}{2017}$ | D. | $\frac{2017}{2018}$ |
分析 当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1即可得出通项公式;然后利用裂项消项法求解即可.
解答 解:当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时适合上式,∴an=2n-1.(n∈N*).
数列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$可得:$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
数列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n项和为Tn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(1-\frac{1}{2n+1})$.
则T2017=$\frac{1}{2}(1-\frac{1}{4035})$=$\frac{2017}{4035}$.
故选:B.
点评 本题考查了递推式的意义、“裂项求和”、恒成立问题的转化,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.已知等边三角形的一个顶点坐标是($\frac{\sqrt{3}}{4}$,0),另外两个顶点在抛物线y2=$\sqrt{3}$x上,则这个等边三角形的边长为( )
| A. | 3 | B. | 6 | C. | 2$\sqrt{3}$±3 | D. | 2$\sqrt{3}$+3 |
19.某产品的广告费用x(百万元)与销售额y(百万元)的统计数据如表:
根据表中数据,用最小二乘法得出y与x的线性回归方程为$\stackrel{∧}{y}$=8.6x+5,则表中的m的值为( )
| x | 2 | 4 | 5 | 6 | 8 |
| y | 25 | 33 | m | 55 | 75 |
| A. | 46 | B. | 48 | C. | 50 | D. | 52 |
13.等差数列{an}的前n项和为Sn,且S5=-15,a2+a5=-2,则公差d等于( )
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |