ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖª¶¯Ô²MÔÚÔ²F1£º£¨x+1£©2+y2=$\frac{1}{4}$ÍⲿÇÒÓëÔ²F1ÏàÇУ¬Í¬Ê±»¹ÔÚÔ²F2£º£¨x-1£©2+y2=$\frac{49}{4}$ÄÚ²¿ÓëÔ²F2ÏàÇУ®£¨1£©Çó¶¯Ô²Ô²ÐÄMµÄ¹ì¼£·½³Ì£»
£¨2£©¼Ç£¨1£©ÖÐÇó³öµÄ¹ì¼£ÎªC£¬CÓëxÖáµÄÁ½¸ö½»µã·Ö±ðΪA1¡¢A2£¬PÊÇCÉÏÒìÓÚA1¡¢A2µÄ¶¯µã£¬ÓÖÖ±Ïßl£ºx=$\sqrt{6}$ÓëxÖá½»ÓÚµãD£¬Ö±ÏßA1P¡¢A2P·Ö±ð½»Ö±ÏßlÓÚE¡¢FÁ½µã£¬ÇóÖ¤£ºDE•DFΪ¶¨Öµ£®
·ÖÎö £¨1£©ÓÉÖ±ÏßÓëÔ²ÏàÇУ¬Ôò|MF1|+|MF2|=4£¾|F1F2|£¬ÔòMµãµÄ¹ì¼£ÊÇÒÔF1£¬F2Ϊ½¹µãµÄÍÖÔ²£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©·½·¨Ò»£º·Ö±ðÇóµÃÖ±ÏßPA1µÄ·½³Ì£¬Ö±ÏßPA2µÄ·½³Ì£¬·Ö±ðÇóµÃEºÍF×ø±ê£¬Ôò$|{DE}|•|{DF}|=|{\frac{y_0}{{{x_0}+2}}£¨{\sqrt{6}+2}£©¡Á\frac{y_0}{{{x_0}-2}}£¨{\sqrt{6}-2}£©}|=|{\frac{y_0^2}{x_0^2-4}¡Á2}|$£¬¼´¿ÉÇóµÃDE•DFΪ¶¨Öµ£»
·½·¨¶þ£ºÉèEºÍF×ø±ê£¬ÁªÁ¢·½³ÌÇóµÃPµÄ×ø±ê£¬½«P´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃ${k_1}{k_2}=-\frac{3}{4}$£¬Ôò$|{DE}|•|{DF}|=2{k_1}{k_2}=2¡Á|{-\frac{3}{4}}|=\frac{3}{2}$Ϊ¶¨Öµ£®
½â´ð ½â£º£¨1£©É趯ԲMµÄ°ë¾¶Îªr£¬ÓÉÒÑÖªµÃ$|{M{F_1}}|=\frac{1}{2}+r£¬|{M{F_2}}|=\frac{7}{2}-r$£¬|MF1|+|MF2|=4£¾|F1F2|£¬
¡àMµãµÄ¹ì¼£ÊÇÒÔF1£¬F2Ϊ½¹µãµÄÍÖÔ²£¬ÉèÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬Ôòa=2£¬c=1£¬Ôòb2=a2-c2=3£¬
·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£»
£¨2£©½â·¨Ò»£ºÉèP£¨x0£¬y0£©£¬ÓÉÒÑÖªµÃA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬
Ôò${k_{P{A_1}}}=\frac{y_0}{{{x_0}+2}}$£¬Ö±ÏßPA1µÄ·½³ÌΪ£º${l_{P{A_1}}}£ºy=\frac{y_0}{{{x_0}+2}}£¨{x+2}£©$£¬${k_{P{A_2}}}=\frac{y_0}{{{x_0}-2}}$£¬Ö±ÏßPA2µÄ·½³ÌΪ£º${l_{P{A_2}}}£ºy=\frac{y_0}{{{x_0}-2}}£¨{x-2}£©$£¬
µ±$x=\sqrt{6}$ʱ£¬$E£¨{\sqrt{6}£¬\frac{y_0}{{{x_0}+2}}£¨{\sqrt{6}+2}£©}£©£¬F£¨{\sqrt{6}£¬\frac{y_0}{{{x_0}-2}}£¨{\sqrt{6}-2}£©}£©$£¬
¡à$|{DE}|•|{DF}|=|{\frac{y_0}{{{x_0}+2}}£¨{\sqrt{6}+2}£©¡Á\frac{y_0}{{{x_0}-2}}£¨{\sqrt{6}-2}£©}|=|{\frac{y_0^2}{x_0^2-4}¡Á2}|$£¬
ÓÖ¡ßP£¨x0£¬y0£©Âú×ã$\frac{x_0^2}{4}+\frac{y_0^2}{3}=1$£¬
¡à$\frac{y_0^2}{x_0^2-4}=-\frac{3}{4}$£¬
¡à$|{DE}|•|{DF}|=|{-\frac{3}{4}¡Á2}|=\frac{3}{2}$Ϊ¶¨Öµ£®
£¨2£©½â·¨¶þ£ºÓÉÒÑÖªµÃA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬ÉèÖ±ÏßPA1µÄбÂÊΪk1£¬Ö±ÏßPA2µÄбÂÊΪk2£¬ÓÉÒÑÖªµÃ£¬k1£¬k2´æÔÚÇÒ²»ÎªÁ㣮
¡àl1µÄ·½³ÌΪ£ºy=k1£¨x+2£©£¬l2µÄ·½³ÌΪ£ºy=k2£¨x-2£©£¬
µ±$x=\sqrt{6}$ʱ£¬$E£¨{\sqrt{6}£¬{k_1}£¨{\sqrt{6}+2}£©}£©£¬F£¨{\sqrt{6}£¬{k_2}£¨{\sqrt{6}-2}£©}£©$£¬
¡à$|{DE}|•|{DF}|=|{{k_1}£¨{\sqrt{6}+2}£©¡Á{k_2}£¨{\sqrt{6}-2}£©}|=2|{{k_1}{k_2}}|$£®
ÁªÁ¢l1£¬l2·½³ÌÇó³öPµã×ø±êΪ$£¨{\frac{{2£¨{{k_1}+{k_2}}£©}}{{{k_2}-{k_1}}}£¬\frac{{4{k_1}{k_2}}}{{{k_2}-{k_1}}}}£©$£¬
½«Pµã×ø±ê´úÈëÍÖÔ²·½³Ì3x2+4y2=12µÃ$3¡Á\frac{{4{{£¨{{k_1}+{k_2}}£©}^2}}}{{{{£¨{{k_2}-{k_1}}£©}^2}}}+4¡Á\frac{16k_1^2k_2^2}{{{{£¨{{k_2}-{k_1}}£©}^2}}}=12$£¬
¼´$12{£¨{{k_1}+{k_2}}£©^2}+64k_1^2k_2^2=12{£¨{{k_2}-{k_1}}£©^2}$£¬
ÕûÀíµÃk1k2£¨3+4k1k2£©=0£¬
¡ßk1k2¡Ù0£¬¡à${k_1}{k_2}=-\frac{3}{4}$£¬
¡à$|{DE}|•|{DF}|=2{k_1}{k_2}=2¡Á|{-\frac{3}{4}}|=\frac{3}{2}$Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°ÍÖÔ²µÄ¶¨Ò壬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{4034}{4035}$ | B£® | $\frac{2017}{4035}$ | C£® | $\frac{2016}{2017}$ | D£® | $\frac{2017}{2018}$ |
| A£® | 6 | B£® | 6$\sqrt{3}$ | C£® | 12 | D£® | 12$\sqrt{3}$ |
| A£® | £¨-¡Þ£¬-1£© | B£® | £¨-2£¬+¡Þ£© | C£® | £¨-¡Þ£¬-$\frac{3}{2}$£©¡È£¨-1£¬+¡Þ£© | D£® | £¨-2£¬-$\frac{3}{2}$£©¡È£¨-$\frac{3}{2}$£¬-1£© |