题目内容

12.若α+β=$\frac{π}{4}$,且α,β均不等于kπ+$\frac{π}{2}$(k∈Z),求证:(tanα+1)(tanβ+1)=2.

分析 先根据α+β=$\frac{π}{4}$,求出tanα、tanβ的关系式,再将(1+tanα)(1+tanβ)展开即可得到答案.

解答 证明:∵α+β=$\frac{π}{4}$,且α,β均不等于kπ+$\frac{π}{2}$(k∈Z,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=1,
∴tanα+tanβ=1-tanαtanβ,
∴tanα+tanβ+tanαtanβ=1,
∴(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ=1+1=2.

点评 本题主要考查两角和的正切公式,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网