题目内容
若A(0,-1,-1),B(1,0,3),点P在z轴上且|PA|=|PB|,则点P的坐标为 .
考点:空间两点间的距离公式
专题:空间位置关系与距离
分析:由点P在z轴上且到A、B两点的距离相等,可设出点P(0,0,z),由两点间的距离公式建立方程求解即可得到点M的坐标.
解答:
解:设P(0,0,z),由|PA|=|PB|,得0+1+(z+1)2=1+0+(z-3)2,
解得z=1,
故点P的坐标为(0,0,1),
故答案为:(0,0,1).
解得z=1,
故点P的坐标为(0,0,1),
故答案为:(0,0,1).
点评:本题考点是点线面间的距离计算,考查用两点间距离公式建立方程求参数,两点间距离公式是一个重要的把代数与几何接合起来的结合点,通过它进行数形转化.
练习册系列答案
相关题目
函数y=ax(a>0且a≠1)在[0,1]上的最大值与最小值的差为
,则a等于( )
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、-
| ||||
D、
|
已知x>0,设y=x+
,则( )
| 1 |
| x |
| A、y≥2 | B、y≤2 |
| C、y=2 | D、不能确定 |
下列对应关系中,是A到B的映射的有( )
①A={1,2,3},B={0,1,4,5,9,10},f:x→x2;
②A=R,B=R,f:x→x的倒数;
③A=N,B=N*,f:x→x2;
④A=Z,B=Z,f:x→2x-1.
①A={1,2,3},B={0,1,4,5,9,10},f:x→x2;
②A=R,B=R,f:x→x的倒数;
③A=N,B=N*,f:x→x2;
④A=Z,B=Z,f:x→2x-1.
| A、①② | B、①④ |
| C、①③④ | D、②③④ |
数列{an}是等差数列,a2+a16+a30=60,则a10+a22=( )
| A、0 | B、20 | C、40 | D、210 |