题目内容

8.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为$\frac{{\sqrt{2}}}{10}$,$\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求sin(α-β)的值;
(Ⅱ)求α+2β的值.

分析 (Ⅰ)由已知求出cosα,cosβ的值,再由平方关系求出sinα,sinβ的值,结合两角差的正弦求得sin(α-β)的值;
(Ⅱ)由(Ⅰ)求出sin(α+β)、cos(α+β)的值,利用拆角配角思想求得sin(α+2β),结合角的范围求得α+2β的值.

解答 解:(Ⅰ)由已知可得,$cosα=\frac{\sqrt{2}}{10},cosβ=\frac{2\sqrt{5}}{5}$,
∵α,β为锐角,∴sinα=$\frac{7\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{5}}{5}$.
∴sin(α-β)=sinαcosβ-cosαsinβ=$\frac{7\sqrt{2}}{10}×\frac{2\sqrt{5}}{5}$-$\frac{\sqrt{2}}{10}×\frac{\sqrt{5}}{5}$=$\frac{13\sqrt{10}}{50}$;
(Ⅱ)sin(α+β)=sinαcosβ+cosαsinβ=$\frac{7\sqrt{2}}{10}×\frac{2\sqrt{5}}{5}$+$\frac{\sqrt{2}}{10}×\frac{\sqrt{5}}{5}$=$\frac{3\sqrt{10}}{10}$,
cos(α+β)=$\sqrt{1-si{n}^{2}(α+β)}$=$-\frac{\sqrt{10}}{10}$.
∴sin(α+2β)=sin[(α+β)+β]=sin(α+β)cosβ+cos(α+β)sinβ
=$\frac{3\sqrt{10}}{10}×\frac{2\sqrt{5}}{5}+(-\frac{\sqrt{10}}{10})×\frac{\sqrt{5}}{5}$=$\frac{\sqrt{2}}{2}$.
又0<α+2β<$\frac{3π}{2}$,
∴α+2β=$\frac{3π}{4}$.

点评 本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用及两角和与差的正弦余弦,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网