题目内容
已知|
|=4,|
|=2,
与
的夹角为120°,点P为线段AB上得一点,且
=3
,则
•
= .
| OA |
| OB |
| OA |
| OB |
| BP |
| PA |
| OP |
| AB |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:用
,
当基底,表示
,
,则要求的式子变为(
+
)(
-
),再利用两个向量的数量积的定义,数量积公式运算求得结果.
| OA |
| OB |
| OP |
| AB |
| 3 |
| 4 |
| OA |
| 1 |
| 4 |
| OB |
| OB |
| OA |
解答:
解:由题意可得
=
+
=
+
=
+
(
-
)=
+
,
=
-
,
所以
•
=(
+
)(
-
)=
•
-
2+
2-
•
=
×4×2×cos120°-
×42+
×22-
×4×2×cos120°
=-3-12+1+1
=-13;
故答案为-13.
| OP |
| OA |
| AP |
| OA |
| 1 |
| 4 |
| AB |
| OA |
| 1 |
| 4 |
| OB |
| OA |
| 3 |
| 4 |
| OA |
| 1 |
| 4 |
| OB |
| AB |
| OB |
| OA |
所以
| OP |
| AB |
| 3 |
| 4 |
| OA |
| 1 |
| 4 |
| OB |
| OB |
| OA |
| 3 |
| 4 |
| OA |
| OB |
| 3 |
| 4 |
| OA |
| 1 |
| 4 |
| OB |
| 1 |
| 4 |
| OB |
| OA |
=
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
=-3-12+1+1
=-13;
故答案为-13.
点评:本题考查了向量的数量积的定义的应用;属于基础题.
练习册系列答案
相关题目