题目内容

已知|
OA
|=4,|
OB
|=2,
OA
OB
的夹角为120°,点P为线段AB上得一点,且
BP
=3
PA
,则
OP
AB
=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:
OA
OB
当基底,表示
OP
AB
,则要求的式子变为( 
3
4
OA
+
1
4
OB
)(
OB
-
OA
),再利用两个向量的数量积的定义,数量积公式运算求得结果.
解答: 解:由题意可得
OP
=
OA
+
AP
=
OA
+
1
4
AB
=
OA
+
1
4
(
OB
-
OA
)
=
3
4
OA
+
1
4
OB
AB
=
OB
-
OA

所以
OP
AB
=(
3
4
OA
+
1
4
OB
)(
OB
-
OA
)=
3
4
OA
OB
-
3
4
OA
2
+
1
4
OB
2
-
1
4
OB
OA

=
3
4
×4×2×cos120°-
3
4
×42+
1
4
×22-
1
4
×4×2×cos120°

=-3-12+1+1
=-13;
故答案为-13.
点评:本题考查了向量的数量积的定义的应用;属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网