题目内容
19.等比数列-3,-6,…的第四项等于( )| A. | -24 | B. | -9 | C. | -12 | D. | 24 |
分析 求出公比,利用等比数列的通项公式即可得出.
解答 解:公比q=$\frac{-6}{-3}$=2,
∴a4=-3×23=-24.
故选:A.
点评 本题考查了等比数列的定义及其通项公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
9.函数y=sinx+$\sqrt{3}$cosx的最小值为( )
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | -2 |
7.已知各项为正的数列{an}的前n项的乘积为Tn,点(Tn,n2-15n)在函数y=log2x的图象上,则数列{log2an}的前10项和为( )
| A. | -140 | B. | -50 | C. | 124 | D. | 156 |
11.某中学在高三年级开设大学先修课程(线性代数),共有50名同学选修,其中男同学30名,女同学20名.为了对这门课程的数学效果进行评估,学校按性别分别采用分成抽样的方法抽取5人进行考核.
(1)求抽取的5人中男、女同学的人数;
(2)考核的第一轮是答辩,顺序由已抽取的甲、乙等5位同学按抽签方式决定.设甲、乙两位同学间隔的人数为X,X的分布列为
求数学期望EX;
(3)考核的第二轮是笔试:5位同学的笔试成绩分别为115,122,105,111,109;结合第一轮的答辩情况,他们的考核成绩分别为125,132,115,121,119.这5位同学笔试成绩与考核成绩的方差分别记为s12,s22,试比较s12与s22的大小.(只需写出结论)
(1)求抽取的5人中男、女同学的人数;
(2)考核的第一轮是答辩,顺序由已抽取的甲、乙等5位同学按抽签方式决定.设甲、乙两位同学间隔的人数为X,X的分布列为
| X | 3 | 2 | 1 | 0 |
| P | $\frac{1}{10}$ | b | $\frac{3}{10}$ | a |
(3)考核的第二轮是笔试:5位同学的笔试成绩分别为115,122,105,111,109;结合第一轮的答辩情况,他们的考核成绩分别为125,132,115,121,119.这5位同学笔试成绩与考核成绩的方差分别记为s12,s22,试比较s12与s22的大小.(只需写出结论)