题目内容
20.(1)证明:平面MNE⊥平面D1DE;
(2)证明:MN∥平面D1DE.
分析 (1)由已知推导出NE⊥DE,NE⊥DD1,从而NE⊥平面D1DE,由此能证明平面MNE⊥平面D1DE.
(2)推导出AB∥DE,从而AB∥平面D1DE,进而BB1∥平面D1DE,平面ABB1A1∥平面D1DE,由此能证明MN∥平面D1DE.
解答 证明:(1)由等腰梯形ABCD中,![]()
∵AB=CD=AD=1,BC=2,N是AB的中点,∴NE⊥DE,
又NE⊥DD1,且DD1∩DE=D,
∴NE⊥平面D1DE,
又NE?平面MNE,
∴平面MNE⊥平面D1DE.…(6分)
(2)等腰梯形ABCD中,
∵AB=CD=AD=1,BC=2,N是AB的中点,∴AB∥DE,∴AB∥平面D1DE,
又DD1∥BB1,则BB1∥平面D1DE,
又AB∩BB1=B,∴平面ABB1A1∥平面D1DE,
又MN?平面ABB1A1,∴MN∥平面D1DE.…(12分)
点评 本题考查面面垂直的证明,考查线面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
12.下列函数中,既是奇函数又在区间(0,+∞)上为增函数的是( )
| A. | y=lnx | B. | y=x3 | C. | y=x2 | D. | y=sinx |