ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²M£º
+
=1(a£¾b£¾0)µÄÀëÐÄÂÊe=
£¬×ó×¼Ïß·½³ÌΪx=-4£®
£¨1£©ÇóÍÖÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖª¹ýÍÖÔ²
+
=1ÉÏÒ»µã£¨x0£¬y0£©×÷ÍÖÔ²µÄÇÐÏߣ¬ÇÐÏß·½³ÌΪ
+
=1£®ÏÖ¹ýÍÖÔ²MµÄÓÒ½¹µã×÷бÂʲ»Îª0µÄÖ±ÏßlÓÚÍÖÔ²½»ÓÚA£¬BÁ½µã£¬¹ýA£¬B·Ö±ð×÷ÍÖÔ²µÄÇÐÏßl1£¬l2£®
¢ÙÖ¤Ã÷£ºl1£¬l2µÄ½»µãPÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
¢ÚÇó¡÷ABPÃæ»ýµÄ×îСֵ£®
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 2 |
£¨1£©ÇóÍÖÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖª¹ýÍÖÔ²
| x2 |
| a2 |
| y2 |
| b2 |
| x0x |
| a2 |
| y0y |
| b2 |
¢ÙÖ¤Ã÷£ºl1£¬l2µÄ½»µãPÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
¢ÚÇó¡÷ABPÃæ»ýµÄ×îСֵ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²M£º
+
=1(a£¾b£¾0)µÄÀëÐÄÂÊe=
£¬×ó×¼Ïß·½³ÌΪx=-4£¬½¨Á¢·½³Ì×飬Çó³ö¼¸ºÎÁ¿£¬¼´¿ÉÇó³öÍÖÔ²MµÄ±ê×¼·½³Ì£»
£¨2£©¢ÙÉèÖ±ÏßAB£ºx=my+1£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÁ½ÇÐÏß·½³ÌΪ
+
=1£¬
+
=1£¬¿ÉµÃ½»µãPµÄ×Ý×ø±ê£¬½ø¶øÇó³öPµÄºá×ø±ê£¬¼´¿ÉµÃ³ö½áÂÛ£»
¢ÚÖ±ÏßAB£ºx=my+1£¬´úÈë
+
=1£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³öÏÒ³¤|AB|£¬Çó³öP£¨4£¬-3m£©µ½Ö±ÏßABµÄ¾àÀ룬¿ÉµÃ¡÷ABPÃæ»ý£¬»»Ôª£¬¼´¿ÉÇó³ö¡÷ABPÃæ»ýµÄ×îСֵ£®
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 2 |
£¨2£©¢ÙÉèÖ±ÏßAB£ºx=my+1£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÁ½ÇÐÏß·½³ÌΪ
| x1x |
| 4 |
| y1y |
| 3 |
| x2x |
| 4 |
| y2y |
| 3 |
¢ÚÖ±ÏßAB£ºx=my+1£¬´úÈë
| x2 |
| 4 |
| y2 |
| 3 |
½â´ð£º
£¨1£©½â£º¡ßÍÖÔ²M£º
+
=1(a£¾b£¾0)µÄÀëÐÄÂÊe=
£¬×ó×¼Ïß·½³ÌΪx=-4£¬
¡à
£¬¡àa=2£¬c=1£¬
¡àb=
=
£¬
¡àÍÖÔ²MµÄ±ê×¼·½³ÌΪ
+
=1£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAB£ºx=my+1£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÁ½ÇÐÏß·½³ÌΪ
+
=1£¬
+
=1£¬
¿ÉµÃ½»µãPµÄ×Ý×ø±êΪy=
=
=-3m£¬
ÉÏʽ×÷²î¿ÉµÃ
+
=0£¬
y=-3m´úÈ룬¿ÉµÃx=-4£¬
¡àl1£¬l2µÄ½»µãPÔÚÒ»Ìõ¶¨Ö±Ïßx=-4ÉÏ£»
¢Ú½â£ºP£¨4£¬-3m£©µ½Ö±ÏßABµÄ¾àÀëd=
£¬
Ö±ÏßAB£ºx=my+1£¬´úÈë
+
=1£¬¿ÉµÃ£¨3m2+4£©y2+6my-9=0£¬
¡ày1+y2=-
£¬y1y2=
£¬
¡à|AB|=
•|y1-y2|=
¡à¡÷ABPÃæ»ýΪS=
|AB|d=
£¬
Éèt=
¡Ý1£¬ÔòS=
=
£¬
Áîu=
¡Ê£¨0£¬1]£¬ÔòS=
£¬ÔÚu¡Ê£¨0£¬1]Éϵ¥µ÷µÝ¼õ£¬
¡àµ±u=1£¬Ôòt=1£¬¼´m=0ʱ£¬¡÷ABPÃæ»ýµÄ×îСֵΪ
£®
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 2 |
¡à
|
¡àb=
| a2-c2 |
| 3 |
¡àÍÖÔ²MµÄ±ê×¼·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAB£ºx=my+1£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÁ½ÇÐÏß·½³ÌΪ
| x1x |
| 4 |
| y1y |
| 3 |
| x2x |
| 4 |
| y2y |
| 3 |
¿ÉµÃ½»µãPµÄ×Ý×ø±êΪy=
| 3(x2-x1) |
| x2y1-x1y2 |
| 3(my2-my1) |
| (my2+1)y1-(my1+1)y2 |
ÉÏʽ×÷²î¿ÉµÃ
| mx |
| 4 |
| y |
| 3 |
y=-3m´úÈ룬¿ÉµÃx=-4£¬
¡àl1£¬l2µÄ½»µãPÔÚÒ»Ìõ¶¨Ö±Ïßx=-4ÉÏ£»
¢Ú½â£ºP£¨4£¬-3m£©µ½Ö±ÏßABµÄ¾àÀëd=
| |-3m2-4+1| | ||
|
Ö±ÏßAB£ºx=my+1£¬´úÈë
| x2 |
| 4 |
| y2 |
| 3 |
¡ày1+y2=-
| 6m |
| 3m2+4 |
| 9 |
| 3m2+4 |
¡à|AB|=
| 1+m2 |
| 12(m2+1) |
| 3m2+4 |
¡à¡÷ABPÃæ»ýΪS=
| 1 |
| 2 |
18(
| ||
| 3(m2+1)+1 |
Éèt=
| m2+1 |
| 18t3 |
| 3t2+1 |
| 18 | ||||
|
Áîu=
| 1 |
| t |
| 18 |
| 3u+u3 |
¡àµ±u=1£¬Ôòt=1£¬¼´m=0ʱ£¬¡÷ABPÃæ»ýµÄ×îСֵΪ
| 9 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ·½³ÌÓëÐÔÖÊ£¬¿¼²éÍÖÔ²µÄÇÐÏß·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬ÄѶȴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚ¡÷ABCÖУ¬ÈôAB=2£¬AC=3£¬¡ÏA=60¡ã£¬ÔòBCµÄ³¤Îª£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
| C¡¢3 | ||
D¡¢
|
ÒÑÖª
ºÍ
ÊÇÆ½ÃæÄÚÁ½¸öµ¥Î»ÏòÁ¿£¬ËüÃǵļнÇΪ60¡ã£¬Ôò2
-
Óë
µÄ¼Ð½ÇÊÇ£¨¡¡¡¡£©
| AB |
| AC |
| AB |
| AC |
| CA |
| A¡¢30¡ã | B¡¢60¡ã |
| C¡¢90¡ã | D¡¢120¡ã |